
CPB Discussion Paper

No 54

24th January 2006

Solving large scale normalised rational expectations models

Olaf van ’t Veer

The responsibility for the contents of this CPB Discussion Paper remains with the author(s)

CPB Netherlands Bureau for Economic Policy Analysis

Van Stolkweg 14

P.O. Box 80510

2508 GM The Hague, the Netherlands

Telephone +31 70 338 33 80

Telefax +31 70 338 33 50

Internet www.cpb.nl

ISBN 90-5833-251-9

Abstract in English

This paper discusses a new approach to solving models containing rational expectations. Instead

of solving the model for each period consecutively as in the Fair-Taylor method, the method in

this paper uses the idea of the Stacked-Time method to solve the model for all periods

simultaneously.

The novelty of the method presented here is, that it is applied to a small subset of model variables

only, the so called feedback variables, that an approximate Jacobian is used and that a subperiod

method is introduced. This leads to significantly smaller Jacobians and less calculations for

solving a model. The feedback variables are determined by an ordering algorithm.

The paper describes the modification to Newton’s method by describing an Extended Feedback

Jacobian, introducing an approximate ‘Shift’ Jacobian to reduce calculation time and a

subperiod method to reduce storage space for the Jacobian matrix. The method has been

implemented at the CPB and used for its GAMMA model. This paper also reports the results of

some experiments with Multimod mark III. These experiments show faster convergence than the

Fair-Taylor method and significantly smaller matrices than the Stacked-Time method.

Abstract in Dutch

Dit stuk beschrijft een nieuwe benadering voor het oplossen van modellen met rationele

verwachtingen. In plaats van het oplossen van het model voor achtereenvolgende periodes, zoals

in de Fair-Taylor methode, maakt de hier beschreven methode gebruik van het idee van de

Stacked-Time methode om het model voor alle periodes simultaan op te lossen.

Het nieuwe aan de methode is dat deze slechts wordt toegepast op een kleine deelverzameling

modelvariabelen, de zogenaamde feedback variabelen, dat gebruik wordt gemaakt van een

benaderde ‘Shift’ Jacobiaan en dat een methode voor deelperiodes wordt beschreven. Dit leidt

tot significant kleinere Jacobianen en minder berekeningen voor het oplossen van het model. De

feedback variabelen worden bepaald met behulp van een volgorde algorithme.

Dit stuk beschrijft de aanpassing aan Newton’s methode door de introductie van een Extended

Feedback Jacobian, de introductie van een benaderde ‘Shift’ Jacobiaan voor het beperken van de

rekentijd en een deelperiode methode voor het beperken van de benodigde opslagcapaciteit voor

de Jacobiaan. De methode is geïmplementeerd op het CPB en wordt gebruikt voor het GAMMA

model. Ook wordt verslag gedaan van de resultaten van een aantal experimenten met Multimod

mark III. Deze experimenten laten snellere convergentie dan de Fair-Taylor methode en

significant kleinere matrices dan de Stacked-Time methode zien.

3

4

Contents

Summary 7

1 Introduction 9

2 Ordering the model 11

2.1 The standard Ordering method 11

2.2 Extending the ordering for forward looking variables 11

3 Modified Newton method: the Extended Feedback Jacobian 15

4 Reducing the number of calculations: the ‘Shift Jacobian’ 19

5 Reducing storage space: the Subperiod method 21

6 Practical use 25

6.1 Some implementation issues 25

6.2 Small numerical example 25

6.3 MULTIMOD mark III 27

6.4 GAMMA 30

7 Suggestions for improvement 33

7.1 The Ordering rules 33

7.2 The Relaxation factor 33

8 Conclusion 35

A The standard Ordering method 37

B Proofs of Theorems 41

B.1 Proof of Local convergence for the ‘Shift Jacobian’ 41

B.2 Proof of the Upper Bound for‖∆(xn)‖ 42

C Derivatives of feedback variables 45

C.1 Period-by-period case 45

C.2 Intertemporal case 45

References 47

5

6

Summary

This paper describes a new approach to solving models containing rational expectations. It

avoids the problems of the Fair-Taylor method, which are slow convergence and often no

convergence. It also avoids the storage requirements of the full Stacked-Time method. Instead of

solving the model for each period consecutively as in the Fair-Taylor method, the method in this

paper uses the idea of the Stacked-Time method to solve the model for all periods

simultaneously. However, this approach is applied to a small subset of model variables only, the

feedback variables. This leads to significantly smaller Jacobians and less calculations to solve

the model. The set of feedback variables is determined by an ordering algorithm. This paper

gives an overview of the ordering algorithm used and describes the extensions to the algorithm

for lead variables.

As a starting point for the method the Extended Feedback Jacobian is described. This matrix

contains the partial derivatives of the feedback variables for the full simulation period and is very

sparse. The block structure of this matrix is explained.

To reduce calculation time a ‘Shift’ Jacobian is introduced. This matrix has the structure of

the Extended Feedback Jacobian, however only a small part of the partial derivatives are actually

calculated. The remaining derivatives are approximated. The appendix contains proof that the

Newton method with the ‘Shift’ Jacobian converges q-linearly to the solution.

For more complicated and more heavily nonlinear models a subperiod method is introduced.

Solving the model for overlapping subperiods using ‘Shift’ Jacobians makes the method

applicable for a larger class of models.

A small example is given in which the ‘Shift’ Jacobian for a small model is derived

numerically. The results of some experiments with Multimod mark III and GAMMA are also

included.

Finally some suggestions for improvement and further research and some concluding

remarks are made.

7

8

1 Introduction 1

This paper describes a new approach to solving models with rational expectations. It avoids the

problems of the Fair-Taylor method, which are slow convergence and often no convergence, (see

Fair and Taylor (1983) for a description). It also avoids the storage requirements of the full

Stacked-Time method (see Armstrong et al. (1995) for a description), which, in recent articles

(see Dixon et al. (2005)), is still mentioned as the major problem of this method.

Before the model is solved it is ordered and the result of this ordering is a feedback set

containing a (usually) small subset of the endogenous variables of the model. The ordering

algorithm used requires the models to be normalised. The Newton method is applied to these

feedback variables only, significantly reducing the size of the Jacobian matrix. The ordering

method and the extension for lead variables are described in section 2 and appendix A.

The starting point of the method presented here is a new structure for the Jacobian matrix. It

is defined for all feedback variables in all periods. Its structure is described in section 3.

Derivatives of feedback variables, needed for the Jacobian matrix, are calculated somewhat

differently than direct derivatives. Appendix C discusses this topic.

To reduce calculation time an approximation of the Jacobian can be used, the ‘Shift’

Jacobian. Only a fraction of the derivatives are actually calculated and these are used to

approximate the remaining derivatives. Section 4 discusses this approximate Jacobian and

appendix B proves that a Newton method with the Shift Jacobian converges q-linearly to the

solution and derives the condition for which this property holds.

To reduce storage space the Newton process can be applied to subperiods of the full

simulation path. This creates a second iterative stage over the extended Newton method. This

process is described in section 5. This section also presents a pseudo code algorithm of the

subperiod method.

Some practical examples are given in section 6. First some implementation issues are

discussed. Then a small numerical example is given. Finally some tests are performed on IMF’s

Multimod mark III and on CPB’s GAMMA models.

Finally some suggestions for improvement and some short concluding remarks are made.

1 I wish to thank B.H. Hasselman, A.A. van der Giessen and D.A.G. Draper for their helpful comments.

9

10

2 Ordering the model

2.1 The standard Ordering method

The ordering method described here works for normalised models. In normalised models there is

a clear relationship between left-hand side endogenous variables and right-hand side endogenous

variables:

xt = F
(
xt−h, . . . ,xt−1,xt ,xt+1, . . . ,xt+u;zt−i , . . . ,zt−1,zt ,zt+1, . . . ,zt+ j

)
with xk the endogenous variables with maximum lagh and maximum leadu andzj the

exogenous variables. The ordering method ignores the exogenous variables.

Ordering a model can be seen as a method for compressing the model into a set of feedback

variables or a compressed form of the model. A Newton type method only needs derivatives of

these variables for the Jacobian matrix to solve the complete modelF(x) = x.

The ordering algorithm presented here splits a model in four parts:

Model



Set of Recursive prologue variables,Xp

Simultaneous block

 Set of Recursive simultaneous block equations,Xs

Set of Simultaneous feedback variablesXfb

Set of Recursive epilogue variables,Xe

The prologueXp contains those variables that depend only on lagged or exogenous variables or

on previously calculated prologue variables. The recursive part of the simultaneous blockXs is

ordered in such a way that, given values forXfb, all Xs can be calculated recursively. Finally the

epilogueXe can be calculated recursively onceXp, Xs andXfb have been calculated.

Don and Gallo (1987) and Levy and Low (1988) discuss this algorithm for compressing a

model. Since the method presented in this paper is applied to the feedback set it is helpful to

explain the ordering method in some detail. This is done in appendix A.

2.2 Extending the ordering for forward looking variables

The method mentioned in the previous section orders the model based on the current period

structure of the model. The rules do not ensure that leads are put into the feedback set whenever

possible or useful. To achieve this, a second stage is added to the ordering process.

First the rules as described in the previous section are applied. Using the ordering from this

phase the model is ordered a second time, starting again with the initial incidence matrixM. Let

theN×N incidence matrix of modelF(x) ∈ RN be defined such that

11

Mi, j =

0 if ∂ fi
∂ x j

= 0,∀x j ∈ R i, j → 1. . .N

1 otherwise

This time we start with an initial feedback setX̂fbwhich is created by the following rule:

Repeat

if xi occurs in F(x) with a lead and xi ∈ Xs or xi ∈ Xfb or xi ∈ Xe then add xi to X̂fb (2.1)

delete row i and column i

until no new xi is found.

Finally X̂fb is copied toXfb, the setsXp,Xs,Xe are cleared and a second ordering round is

executed starting at the rule given in A.1.

This approach is fully heuristic and based on the idea that leads of prologue variables do not

influence the Newton process. These can be calculated immediately. However leads of variables

in the simultaneous set will influence the Newton process and have to be included in the

feedback set. Leads in epilogue variables may influence the simultaneous set in the next period,

so they also have to be in the feedback set.

Clearly this is far from a formal method of using lead information in the ordering of a model

and more research needs to be done on this topic. The extension presented here doesn’t take

interdependencies between lead variables into account. Use of these interdependencies may lead

to a smaller set of feedback variables and thus to smaller sizes of the resulting Jacobian matrices.

Later in this paper some ideas about improving the ordering method will be given. A summary

of the extended ordering algorithm is given in figure 2.1.

12

Figure 2.1 The Extended Ordering Algorithm

for phase = 1 to 2 do

repeat

if ∑ j Mi, j = 0 then add xi to the end of prologue Xp and delete row i and column i (A.1)

until no new xi are found.

repeat

if ∑i Mi, j = 0 then add x j to the start of epilogue Xe and delete row j and column j (A.2)

until no new x j are found.

repeat

Apply compression rules from figure A.1

until M = 0

rebuild M

delete Xp, Xe and Xfb from M

repeat

if ∑ j Mi, j = 0 then add xi to recursive simultaneous set Xs and delete row i and column i (A.8)

until M = 0

if phase = 1 then

rebuild M

repeat

if xi occurs in F(x) with a lead and xi ∈ Xs or xi ∈ Xfb or xi ∈ Xe then

add xi to X̂fb and delete row i and column i (2.1)

endif

until all leads have been checked

Xp = /0 Xe = /0 Xs = /0

Xfb = X̂fb

endif

endfor

13

14

3 Modified Newton method: the Extended Feedback Jacobian

In this section the modified Newton method is described. As was mentioned in the previous

section the Newton process is applied to the feedback variables only. So the model under

consideration is actually a condensed version ofN (feedback)equations of the original model of

M equations, withM � N.

A (feedback) model is a series of expressionsf i(x),1 6 i 6 N,x ∈ RN generating a resultxi

for each periodt of the simulation path.

The standard expression for the variation of a functionf i(x) in periodt is:

d f i
t (x) =

∂ f i
t (x)

∂ x1
t

dx1
t +

∂ f i
t (x)

∂ x2
t

dx2
t · · ·+

∂ f i
t (x)

∂ xN
t

dxN
t (3.1)

This expression uses only variations in periodt to derive the variation inf i
t .2 In models with

rational expectations we would like to use information about the dynamics of the model, hidden

in the intertemporal derivatives. Therefore equation 3.1 has to be extended for all periods of the

simulation path:

d f i
t (x) =

T

∑
j=1

N

∑
p=1

∂ f i
t (x)

∂ xp
j

dxp
j , (1 6 t 6 T,1 6 i 6 N) (3.2)

For a system ofN equationsF(x) the expression is:

dF(x) = J(x)dx F,x ∈ RNT,J ∈ RNT×RNT (3.3)

If vectorxT looks like(x1
1 x2

1 . . .xN
1 x1

2 . . .xi
t xi+1

t . . .xN
T) thenJ(x) has the following structure:

J(x) =



∂ f 1
1 (x)

∂ x1
1

∂ f 1
1 (x)

∂ x2
1

. . .
∂ f 1

1 (x)

∂ x j
t

∂ f 1
1 (x)

∂ x j+1
t

. . .
∂ f 1

1 (x)
∂ xN

T

∂ f 2
1 (x)

∂ x1
1

... . . .
...

... . . .
∂ f 2

1 (x)
∂ xN

T
...

...
...

...
... . . .

...
∂ f i

t (x)
∂ x1

1

∂ f i
t (x)

∂ x2
1

. . . ∂ f i
t (x)

∂ xi
t

∂ f i
t (x)

∂ xi+1
t

. . . ∂ f i
t (x)

∂ xN
T

∂ f i+1
t (x)
∂ x1

1

... . . .
...

... . . .
∂ f i+1

t (x)
∂ xN

T
...

... . . .
...

...
...

...
∂ f N

T (x)
∂ x1

1
. .

∂ f N
T (x)

∂ xN
T



(3.4)

Using 3.3 the Newton method for solvingx = F(x) can be written as3:

xk+1 = xk −λ
(
J(xk)− I

)−1(
F(xk)−xk

)
(3.5)

HereJ(xk), the Jacobian, has the shape of 3.4 andλ is a relaxation factor.

2 For ease of notation ∂ f (x)
∂ x is written instead of the full feedback expression. Appendix C on page 45 explains how these

derivatives are calculated for feedback variables.

3 Here dF(xk) =−(G(xk)−xk) when solving for F(x) = G(x)−x = 0 and dxk = (JG(xk)− I)−1dF(xk).

15

The size of thisJ(xk) is much larger than the size of the corresponding Jacobian in the single

period method. However the matrix is very sparse. If the maximum lead isu then clearly
∂ f i

p(x)

∂ x j
t

= 0 for all t > p+u.

The matrixJ(xk) has the following block structure:

J(x) =


D1 E1

2 . . . E1
T

L2
1 D2 . . . E2

T
...

...
...

...

LT
1 LT

2 . . . DT

 (3.6)

Where eachDi , E j
i andL j

i is anN×N submatrix. Here

Di =



∂ f 1
i (x)

∂ x1
i

∂ f 1
i (x)

∂ x2
i

. . .
∂ f 1

i (x)
∂ xN

i
∂ f 2

i (x)
∂ x1

i

∂ f 2
i (x)

∂ x2
i

. . .
∂ f 2

i (x)
∂ xN

i
...

...
...

...
∂ f N

i (x)
∂ x1

i

∂ f N
i (x)

∂ x2
i

. . .
∂ f N

i (x)
∂ xN

i


(3.7)

is the matrix of current period derivatives, which is identical to the single period Jacobian in

periodi from the original Newton method.

E j
i =



∂ f 1
j (x)

∂ x1
i

∂ f 1
j (x)

∂ x2
i

. . .
∂ f 1

j (x)

∂ xN
i

∂ f 2
j (x)

∂ x1
i

∂ f 2
j (x)

∂ x2
i

. . .
∂ f 2

j (x)

∂ xN
i

...
...

...
...

∂ f N
j (x)

∂ x1
i

∂ f N
j (x)

∂ x2
i

. . .
∂ f N

j (x)

∂ xN
i


i > j (3.8)

is the matrix of lead derivatives, the effect of a change in periodi on periodj wherei > j .

Finally L j
i has the structure ofE j

i , only herei < j , the matrix of lag derivatives. If the maximum

lead in the model isu then

E j
i = 0, for i > j +u (3.9)

If lag effects die out afterl periods then

L j
i = 0, for j > i + l (3.10)

In many econometric modelsJ(x) is very sparse and has a band structure. For example ifu = 1

16

(most common) andl = 1 thenJ(x) has the following structure

J(x) =



D1 E1
2 0 0

L2
1 D2 E2

3
... . . . 0

0 L3
2 D3 E3

4
...

...
...

...
...

...
... 0

... . . .
... LT−1

T−2 DT−1 ET−1
T

0 0 LT
T−1 DT


The standard Newton method requires recalculation ofJ(xn) at each step. However, there are

several Quasi Newton methods, which postpone the recalculation ofJ(xn). One of these

methods can be used here. In practice recalculation ofJ(xn) is postponed until ‖xn−xn−1‖
‖xn−1−xn−2‖

> η

with η some threshold for speed of convergence. In this way the method turns into

xn = xn−1−
(
J(xk)− I

)−1(F(xn−1)−xn−1) k 6 n−1 (3.11)

which is known to converge q-linearly in aδ -neighbourhood ofx∗ (See Kelley (1995), section

5.4.1)

‖xn−x∗‖= KJ

[
‖xk −x∗‖+‖J(xk)−J(x∗)‖

]
‖xn−1−x∗‖ (3.12)

HereKJ is a constant defined as

KJ = (1+2γ)
[

γ ‖F ′(x∗)−1‖+16‖F ′(x∗)−1‖2‖F ′(x∗)‖+4‖F ′(x∗)−1‖
]

with γ the Lipschitz constant ofJ(x).

17

18

4 Reducing the number of calculations: the ‘Shift Jacobian’

Similar to the Quasi Newton methods, which do not recalculateJ(x) at each iteration, there is

the option of not explicitly calculating each∂ f i
t (x)

∂ x j
p

. If u is the maximum lead in the model then

calculating derivatives for the firstu +1 periods captures the lag and lead effects in the model.

Setting

∂ f i
t (x)

∂ x j
p

= 0 [t +u < p 6 T] (4.1)

∂ f i
t (x)

∂ x j
p

=
∂ f i

t−1(x)

∂ x j
p−1

=
∂ f i

t−(p−u−1)(x)

∂ x j
u+1

[u +1 < p 6 t +u] (4.2)

reduces the number of derivatives fromT2N2 to (u +1)TN2. Using 4.2 implies that derivatives

for t > u +1 will be approximated by those fort = u +1. The reuse of earlier derivatives can be

seen as a shift in diagonal direction of the blocksDi , E j
i andL j

i from 3.6. Foru = 1 this looks

like

Ĵ(x) =



D1 E1
2 0 0

L2
1 D2 ↘

... . . . 0

L3
1 L3

2 ↘ ↘
...

...
...

... ↘ ↘ ↘ 0
...

... ↘ L3
2 D2 E1

2

LT
1 LT

2 . . . L4
3 L3

2 D2


(4.3)

Because of the way the matrix is constructed it will be called the ‘Shift Jacobian’. Using this

approximation ofJ(x) we can write the Newton method as:

xn+1 = xn−
(
J(xn)+∆(xn)− I

)−1(
F(xn)−xn

)
(4.4)

where∆(xn) is the error matrix in pointxn, the difference between the true JacobianJ(xn) and

the ‘Shift Jacobian’. If for exampleu = 1 then∆(x) looks like

∆(x) = Ĵ(x)−J(x) =



0 0 0 0

0 0 E1
2 −E2

3
... . . . 0

0 0 D2−D3 E1
2 −E3

4
...

...
...

... . . .
...

... 0
...

... . . . L3
2−LT−1

T−2 D2−DT−1 E1
2 −ET−1

T

0 0 L3
2−LT

T−1 D2−DT


(4.5)

If ‖∆(x)‖ is such that(J(x)+∆(x))−1 is an approximate inverse ofJ(x) then this method can be

shown to converge tox∗.

19

Theorem 4.1. Assume that F(x) has a solution and that J(x)+∆(x) is nonsingular.

Furthermore assume thatB(δ) = {x | ‖x−x∗‖< δ} and that J(x) is Lipschitz continuous on

B(δ) with Lipschitz constantγ , implying that‖J(xi)−J(x j)‖6 γ ‖xi −x j‖. Finally assume that(
J(xn)+∆(xn)

)−1
is an approximate inverse of J(xn). Then there exist K> 0, δ > 0 and

δ1 ∈ (0,1) such that for xn ∈B(δ)

xn+1 = xn−
(
J(xn)+∆(xn)− I

)−1(
F(xn)−xn

)
is defined and satisfies

‖xn+1−x∗‖6
(
Kδ +4δ1κ (J(x∗)− I)

)
‖xn−x∗‖

whereκ (A) is the condition number of matrix A with respect to‖.‖.

This theorem shows that for sufficiently smallδ andδ1 the Newton method with the Shift

Jacobian converges q-linearly tox∗ in a neighbourhoodB(δ) of x∗. Proof of this theorem is

given in Appendix B.

Theorem 4.2. Assume that J(x)+∆(x) is nonsingular. If there exists aδ1 ∈ (0,1) such that

‖∆(xn)‖6
δ1‖J(xn)‖

1− δ1

which implies

‖I −
(
J(xn)+∆(xn)

)−1
J(xn)‖6 δ1 < 1

then
(
J(xn)+∆(xn)

)−1
is an approximate inverse of J(xn).

This theorem shows that the upper bound on‖∆(xn)‖ is relative to‖J(xn)‖. Proof of this

theorem is also given in Appendix B. So if the partial derivatives ofF(x) are relatively stable

over time, then the Shift Jacobian can definitely be used, since‖∆(x)‖ will be small in this case.

For those models which do not satisfy the criterion for‖∆(x)‖ the next chapter will deal with

another modification, which leads to smaller sizes ofJ(x) and usually a smaller‖∆(x)‖.

20

5 Reducing storage space: the Subperiod method

The last two sections dealt with applying the Stacked-Time method to feedback variables and

using an approximate Jacobian. This section uses some of the ideas on Type III iterations of the

Fair-Taylor method (see Fair and Taylor (1983), section 2.1) to make the method suitable for

more complicated and more heavily nonlinear models. Instead of calculatingJ(x) for the

complete simulation path 1. . .T, separate Jacobians for overlapping subperiods might be

calculated. Then each subperiodi can be solved using the Newton method with a Jacobian

Ji(xi). Since the length of a subperiod will be smaller thanT, the size of the subperiod Jacobians

Ji(xi) will be significantly smaller than the full JacobianJ(x) for the complete period 1. . .T.

The solution process for the complete simulation path 1. . .T is an iteration over the

subperiods until convergence is reached in all subperiods.

As an example the following diagram shows the structure of the simulation path when it is

divided into 4 subperiods with equal lengthl and stepping through the simulation path with step

sizek.

Complete path Period= [1,T]

S1 = [1, l]

S2 = [1+k,k + l]

S3 = [1+2k,2k + l]

S4 = [1+3k,T]

HereSn is used to denote subperiodn. First the model is solved forS1 using JacobianJ1(x1).

This is repeated forS2 . . .S4 using JacobiansJ2(x2) . . .J4(x4). Then one pass, or subperiod

iteration, through the complete simulation path 1. . .T has been made. These subperiod iterations

continue until in all subperiods convergence is reached.

Using the overlap ofl −k periods between the subperiods ensures that results in subperiod

i−1 andi +1 will influence subperiodi. The iterations over the subperiods ensure that a shock

in any period will have an influence on all periods 1. . .T.

The parametersl andk can be freely chosen to define different lengths of subperiods and

different step sizes. Using subperiod lengthl and step sizek from subperiod to subperiod (k < l)

definesT−l
k +1 subperiods. If this expression is non-integer then the size ofJs(xs) for the last

subperiod will be smaller, since the length of the remaining subperiod is smaller thanl . The

dimensions of the Newton method for subperiods arexs ∈ RNl ,Js(xs) ∈ RNl ×RNl .

Use of the subperiod method means that the original problem of solving the complete simulation

path using anNT×NT Jacobian matrix is replaced by iteratively solvingT−l
k +1 subperiods

usingNl×Nl Jacobian matrices.

21

This way, not only storage space is saved, but also execution time. In practice it appears that it is

possible to reuse the submatrices in following subperiods, reducing storage space and execution

time even more. For each subperiodi the matrixJi−1(x) is reused until

‖xt −xt−1‖> η‖xt−1−xt−2‖ with η being some threshold for convergence speed. Choosingl

andk such thatT−l
k is integer allows the Jacobian to be used for all subperiods, since all

subperiod Jacobians have the same dimension.

It is also possible to combine the results of the previous section with the subperiod approach.

For each subperiod Jacobian only the firstu +1 derivatives are calculated. These values are

shifted in diagonal direction as described in the previous section. Using the Shift Jacobian leads

to (u +1)lN2 evaluations of derivatives.

A pseudo code algorithm given in figure 5.1 illustrates the working of the subperiod method.

Since the use of smaller subperiods leads to a smaller size ofJs(xn) and a relatively larger part of

the derivatives are actually calculated (u+1
l > u+1

T) it is likely that‖∆s(xn)‖6 ‖∆(xn)‖. So if a

model converges q-linearly for the full-period method it will also converge q-linearly within the

subperiods. If a model does not converge in the full-period method it is possible that it will reach

convergence with the subperiod method.

It is difficult to determine optimal sizes forl andk. A smallerl leads to smaller Jacobians,

but more subperiods. Therefore it may take longer to reach full convergence. A smallerk leads

to a larger overlap between subperiods, which means that each subperiod is more ‘solidly

connected’ to its neighbouring subperiods, but it also leads to more subperiods. As will be seen

in section 6 the optimal values forl andk will depend on the model and the structure of the

impulses given to the data.

22

Figure 5.1 The Subperiod Algorithm

actjac= false

initialise x

totconv= convergence
(
xT ,FT(xT)

)
// Check convergence for x1..T

while not totconv and not maximum iterations reached do

totconv= true

for i = 1 to T step k do // k = subperiod step

if i + l −1 6 T then // l = subperiod length; k 6 l ensures overlapping

set subperiod s to [i, i + l −1]

else

set subperiod s to [i,T] // Note T− i +1 < l when T−l
k is non-integer

endif

if not convergence(xs,Fs(xs)) then

totconv= false

if not actjac then

calculate Js(xs) or load Js(xs) from file

actjac= true

conv= false

endif

else

conv= true

endif

while not convand not maximum iterations reached do

calculate xn = xn−1− (Js(xn−1)− I)−1(Fs(xn−1)−xn−1)

conv= convergence (xn,xn−1)

if ‖xn−xn−1‖> η‖xn−1−xn−2‖ then

step back to xn−1

calculate Js(xn−1) or load Js(xn−1) from file

endif

endwhile

endfor

endwhile

23

24

6 Practical use

6.1 Some implementation issues

The method described in this paper has been implemented in ISIS, a proprietary software

package developed by the CPB in cooperation with the University of Aarhus, Denmark, for

solving large scale normalised econometric models and manipulating data.

For solving for dx in the linear system dF = J(x)dx, necessary to calculate the Newton

steps, some basic Sparse Linear Algebra methods are needed. In this implementation the

RGMRES Krylov-method is used (see Greenbaum (1997), section 2.4 for details). Although

RGMRES needs more working space than alternative methods such as Bi-CGSTAB or CGS it

appears to be the most robust method (see also Pauletto (1997)). When using Krylov-methods,

preconditioning appears to be effective (see Kelley (1995) and Greenbaum (1997)). As a

preconditioner an Incomplete LU-factorisation (ILU) is used. Alternatives could be Jacobi or

SSOR preconditioning schemes, but these are less generally applicable. The actual

implementations used are those contained in the NAG-library (mark 18).

The Jacobian and its ILU are stored on file. Thus they can be reused in several runs or, in the

subperiod method, they can be loaded at each new subperiod step instead of recalculating them.

Clearly this may save a lot of execution time for large models.

6.2 Small numerical example

In this section the Jacobian of a small model is derived numerically. The model is a closed

economy 3-generation OLG model of consumption and saving derived from intertemporal

optimisation of consumer utility. The equations of the model are

ai = w−1−
(1+ r

1+θ

) 1
γ−1

ci

ci = (1+ r)ai +w−a j
+1

a j = (1+ r)ai
−1 +w−1−

(1+ r
1+θ

) 1
γ−1

c j

c j = (1+ r)a j +w

r = β B(n(ai +a j))β−1

whereci
t andc j

t are consumption of generationsi and j in periodt, ai
t anda j

t the assets of

generationsi and j at the beginning of periodt andr the interest rate. The time indext has been

omitted from the model equations. Lags are indicated by negative subscripts and leads by signed

positive subscripts. The first generation has not been modelled explicitly, but can be calculated

asch = w−ai
+1 andah = 0. The parameter values used are

w = 1 θ = 0.1 γ = 0.5 B = 0.2 β = 0.6 n = 100

25

Finally ai
0 = 0.063 anda j

T = 0.065.

This model is split into two parts by the ordering method: 3 recursive simultaneous equations

and 2 feedback equations. The 2 feedback variables areai anda j . The model is solved for 4

periods (T = 4). The resulting shift Jacobian is4:

J(x) =



ai
1 a j

1 ai
2 a j

2 ai
3 a j

3 ai
4 a j

4

ai
1 −1.008 −0.003 0 0.991 0 0 0 0

a j
1 −0.009 −1.014 0 0 0 0 0 0

ai
2 0 0 −1.008 −0.003 0 0.991 0 0

a j
2 −1.023 −0.003 −0.009 −0.009 0 0 0 0

ai
3 0 0 0 0 −1.008 −0.003 0 0.991

a j
3 0 0 −1.023 −0.003 −0.009 −0.009 0 0

ai
4 0 0 0 0 0 0 −1.008 −0.003

a j
4 0 0 0 0 −1.023 −0.003 −0.009 −0.009


In the structure of 4.3 this matrix consists of the following basic submatrices:

D1 =


ai

1 a j
1

ai
1 −1.008 −0.003

a j
1 −0.009 −1.014

 E1
2 =


ai

2 a j
2

ai
1 0 0.991

a j
1 0 0



L2
1 =


ai

1 a j
1

ai
2 0 0

a j
2 −1.023 −0.003

 D2 =


ai

2 a j
2

ai
2 −1.008 −0.003

a j
2 −0.009 −0.009


The submatricesD2, E1

2 andL2
1 are shifted along the diagonal to constructJ(x). An interesting

difference betweenD1 andD2 can be noticed. On the one hand in the matrixD1 it can be seen

that∂ a j
1/∂ a j

1 =−1.014; on the other hand in the matrixD2 we have∂ a j
2/∂ a j

2 =−0.009. This is

caused by the absence of a lag effect in period 1. Changes in period 2 also have an effect on

values in period 1 through the lead variables of period 1 changing the lag values for period 2 (see

Appendix C for a description). This effect is measured inE1
2 and is only present for changes in

periods> 1.

Using this sparse 8×8 systemJ(x) the original 20×20 system can be solved. Using the

feedback Jacobian the system contains 25 nonzeroes. If this model were to be solved using a

Stacked-Time method with the complete model a Jacobian with 58 nonzeroes would be the

result. To calculate the Shift Jacobian 16 passes through the model are needed (to calculateD1,

D2, E1
2 andL2

1). In the full Stacked-Time method this would be 80 (5 model variables for 4

periods; each shock to a variable requires 4 passes through the model to calculate all

4 Note that ai
t and a j

t are not part of the matrices. They are merely included for clarity.

26

derivatives). So, for this model, using the Shift Jacobian on feedback variables saves 56% of

storage space and 80% of model iterations for the Jacobian.

Note that the same Jacobian matrix can be used to solve a much longer simulation path with

the subperiod method (for example forT = 200 the model is solved in 3 subperiod iterations

using this matrix).

6.3 MULTIMOD mark III

Multimod is a country model containing rational expectations and implicit equations (see Laxton

et al. (1998) for details). In order to solve Multimod mark III with the new method the model

(and the steady state model) had to be converted into a normalised system of equations. This has

been done rather crudely, by replacingf (x) = g(x) by x = x +α(g(x)− f (x)),(α 6= 0). Clearly

this leads to the same solution as the original model, but it has the drawback that eachx treated

in this way becomes a feedback variable, since they are self-dependent. Therefore this

transformation leads to many more feedback variables than are strictly necessary. However for

Multimod, the objective was not to get a minimal feedback set, but simply to see if the model

could be solved using the Shift Jacobian and the subperiod method.

The ordering method decomposes the model in the following way

MULTIMOD Mark III



39 Prologue equations

499 Simultaneous equations

348 Recursive

151 Feedback variables

127 Epilogue equations

Using the normalised version two policy simulations were solved for 50 periods:

1. a temporary 1% increase in Government spending (CA_G) of Canada in the first period

2. a permanent 1% increase of the Money Target (CA_MT) of Canada in all periods

The policy simulations were solved using Shift Jacobians in 5 different ways:

1. the full-period method,

2. the subperiod method with subperiod length 20 (3 subperiods,k = 15),

3. the subperiod method with subperiod length 10 (9 subperiods,k = 5),

4. the subperiod method with subperiod length 5 (16 subperiods,k = 3),

5. the subperiod method with subperiod length 3 (25 subperiods,k = 2).

The Shift Jacobians are calculated using a maximum leadu of 1.5 The resulting sizes of the

5 In the model the actual maximum lead is 10 for the short term interest rates. But the model solves well using u = 1. This

enables the use of very short subperiods.

27

Shift Jacobians are given in table 6.1.

Table 6.1 Jacobian sizes

Tsub Matrix size # Nonzeroes % Density

3 205209 13010 6.34 %

5 570025 35570 6.24 %

10 2280100 132246 5.80 %

20 9120400 456932 5.01 %

50 57002500 2399805 4.21 %

Matrix sizeis the total number of elements of the Jacobian for this period (= N2T2
sub, whereN is

the number of feedback variables). A large part of the nonzeroes were introduced by the

normalisation process. Undoubtedly this could be done more sensibly, which would almost

certainly lead to a substantial reduction in the amount of non zeroes.

The results of the solution runs are presented in table 6.2.

Table 6.2 1% increase of CA_MT for all periods

Tsub Subperiod iter Model iter Avg. Newt. stp. # Jacobians # Jac. iter Total model iter

3 17 3072 3 4 906 6696

5 16 6256 5 3 1510 10786

10 30 9299 5 2 3020 15339

20 36 9852 5 1 6040 15892

50 1 652 12 1 15100 15752

Fair-Taylor 335a 305b 151 89138

a Number of Fair-Taylor rounds
b Number of single period Jacobians needed

In this table

• subperiod iteris the number of subperiod iterations needed to reach full-period convergence.

This is the number of times the total period 1..50 is passed using the subperiods,

• model iteris the total number of passes through the model for all the Newton steps (excluding

Jacobian calculation). Here each iteration is one pass for 1 period, so calculating values for

period 1..50 are 50 model iterations,

• avg Newt. stp.is the average number of newton steps in each subperiod needed to solve that

subperiod,

• # Jacobiansis the number of Shift Jacobians calculated during the run,

• # Jac. iteris the number of model iterations needed to calculated a Shift Jacobian forTsub,

28

• Total model iteris the total number of model iterations needed to solve the simulation path. This

equals the number of iterations for the Jacobian times the number of Jacobians needed plus the

model iterations for all the Newton steps.

For purpose of reference the last row of the table shows the results for this model run using the

Fair-Taylor method. Only the comparable items have been reported. Here the columnsubperiod

iter reports the number of rounds over the path 1. . .50 needed to solve the simulation path. This

is comparable to subperiods withTsub= 1. # Jacobiansreports the number of single period

Jacobians needed and# Jac. itershows the number of model iterations needed to calculate the

single period Jacobian (= N). The last column,Total model iter, is completely comparable, since

this also reports the total number of model iterations needed to solve the path.

As can be seen in table 6.2 all runs using Shift Jacobian are between 5 and 13 times faster

than the Fair-Taylor method. In terms of model iterations for the Newton steps the full-period

method is superior. This can be expected since iterating over subperiods means it will take at

least one pass through the complete path to spread the effects over all periods. In the full-period

method this can be done in one Newton step.

In terms of total model iterations the smallest subperiod (T = 3) is superior. Although 17

rounds for the full period and 4 Jacobians are needed this still costs less than half of the iterations

needed to calculate a Jacobian for the full period. This is caused by the fact that, althoughT = 3

defines 25 different subperiods, only 4 Jacobians are needed to solve all these subperiods.

Clearly the Shift Jacobians are good approximations of the true Jacobians for these subperiods.

Another interesting result is that increasing the size of the subperiod leads to larger amounts

of Newton steps needed to solve each subperiod. The explanation for this can be found in the

size of‖∆(x)‖ for each subperiod. Since Multimod is strongly nonlinear, increasing the

subperiod length will lead to a larger‖∆(x)‖, since more elements of the Jacobian are

approximated, and this leads to decreasing convergence speed. This is the reason why, using the

full-period Jacobian, 12 Newton steps are needed to solve the period.

This analysis compares several single runs. For these the smallest subperiod Shift Jacobian is

superior to all others. If, however, the model user intends to run a number of policy simulations,

using the same model (to inspect the effects of different exogenous impulses), the full-period

Shift Jacobian is superior. In the first run this Jacobian can be stored, to be reused in all other

runs. As table 6.2 shows: if the Jacobian doesn’t have to be calculated the full-period Shift

Jacobian is superior to all subperiod Jacobians (see columnmodel iter).

In table 6.3 again the smallest subperiod method is superior to all other variations. Inspecting the

solution results reveals that an increase in government spending in the first period has

(decreasing) effects only on the first 22 periods. This means that the model is converged for most

of the subperiods in the smallest subperiod case. Only a few iterations on the first subperiods are

necessary to reach full convergence. Besides this, the argument sketched above still holds:

29

Table 6.3 1% increase of CA_G in the first period

Tsub Subperiod iter Model iter Avg Newt. stp. # Jacobians # Jac. iter Total model iter

3 2 32 <1 1 906 938

5 2 48 <1 1 1510 1558

10 2 55 <1 1 3020 3075

20 2 64 <1 1 6040 6104

50 1 52 1 1 15100 15152

Fair-Taylor 355a 203b 151 82702

a Number of Fair-Taylor rounds
b Number of single period Jacobians needed

smaller Jacobians are a better approximation of the real Jacobians in the case of Multimod mark

III. Table 6.3 demonstrates that the approximate Jacobians aren’t too bad, since the full-period

method reaches convergence in one newton step. Finally the table shows that for this model run

the differences with the Fair-Taylor method are spectacular. Using Shift Jacobians is between 5

and 88 times faster than the Fair-Taylor method.

6.4 GAMMA

The CPB developed the GAMMA model for ageing and pension studies (See Draper and

Westerhout (2002) for a short description of the model). GAMMA models 85 generations of

households (in an OLG-structure), firms, a public sector and different pension systems. Each

household uses a lifecycle approach for planning consumption and asset holdings.

The model is made up of 25241 equations and is solved for 200 periods. The model contains

913 variables with leads and the maximum leadu = 1. The ordering method splits the model as

follows

GAMMA



8047 Prologue equations

1442 Simultaneous equations

948 Recursive

494 Feedback variables

15752 Epilogue equations

Table 6.4 shows the sizes of the Shift Jacobians for different (sub-)period lengths.

As the table shows, the Shift Jacobians are very sparse. Since the maximum lead is 1, 2TsubN2

model iterations are needed to calculate the Jacobian. Since the number of nonzeroes and the

amount of fill-in is very small the ILU doesn’t take much execution time. As a test with different

sizes of subperiods GAMMA is solved with a 1% increase in period 20 of the size of the

generation of 35 year old consumers. Using this impulse the model was solved for a period of

30

Table 6.4 Jacobian sizes

Tsub Matrix size # Nonzeroes % Density

100 2440360000 432963 0.02 %

150 5490810000 1034239 0.02 %

200 9761440000 1639589 0.02 %

200 years. Table 6.5 shows the results.

Table 6.5 1% increase of the size of a generation in period 20

Tsub Nr. subperiod iter Model iter Avg. Newt # Jacobians

100 6 2100 3 1

150 2 750 3 1

200 1 400 2 1

No results for the Fair-Taylor method are given, because the model couldn’t be solved using

Fair-Taylor. This example shows that for GAMMA the full-period method is superior to the

subperiod method. This is caused by the fact that in GAMMA impulses tend to have long lasting

effects. The longer the period of the Jacobian, the more efficiently the Newton method will deal

with this. GAMMA is not very nonlinear so‖∆(x)‖ will be small even for Jacobians over long

periods.

31

32

7 Suggestions for improvement

7.1 The Ordering rules

Improving on the ordering algorithm for rational expectation models is subject of further study.

The idea is that the feedback sets derived by the current (heuristic) extension of the algorithm

might possibly be smaller if an intertemporal ordering algorithm is used. This implies a smaller

size of the Jacobian matrices. Although the precise definition of the ordering rules are not quite

clear yet, a sketch of the idea is given.

By analogy with the extended Jacobian, the incidence matrixM can be extended to capture

all periods of the path, creating an intertemporal incidence matrix.

M ∈ RMT ×RMT Mip, jq =


0

∂ f i
p(x)

∂ x j
q

= 0

1 otherwise

In this definition ofM self dependent variables are still found on the diagonal. Only now, not

only variablei ’s row and column are deleted, but the rows and columns ofi for all periods.

To find intertemporal dependencies, it has to be checked if variablei in periodt depends oni

in future periods. So if

MT

∑
k=t+1

Mit ,ik > 0

then variablei is an intertemporal feedback and should be added to the feedback set.

This is just a rough sketch of the ideas on modifying the ordering algorithm. The rules for

prologue and epilogue sets and the substitution rules would also need to be modified.

7.2 The Relaxation factor

In the current implementation the relaxation mechanism is simple. Instead of calculating a new

Jacobian when‖xn−xn−1‖> η‖xn−1−xn−2‖, a smaller Newton step can be tried using a

relaxation factorλ < 1. If, using this relaxation factor, there is still no convergence,λ can be set

to a smaller value and the (smaller) step can be tried. There is a large amount of theory on how

to decreaseλ (see for instance Dennis, Jr. and Schnabel (1996) on line search algorithms). The

method for decreasingλ in the current implementation is very simple:λk = max(λk−1
2 ,λlow).

When convergence has been reached usingλ in this way, the reverse operation is performed until

convergence is reached withλ = 1.

Dennis, Jr. and Schnabel (1996) give more sophisticated algorithms of selecting values forλ ,

and it would be interesting to see if a reduction in the number of Newton steps would result if

one of these algorithms was used.

33

34

8 Conclusion

This paper has developed the method of using Extended Feedback Jacobians, which appears to

be a good (excellent) alternative to the full Stacked-Time method and the Fair-Taylor method in

solving dynamic economic models with perfect foresight. It has also shown that approximate

‘Shift’ Jacobians can be used for the full period or iteratively for subperiods. All the models

used in this paper converge in both the full-period method and the subperiod method using Shift

Jacobians. Which method is superior (full-period or subperiod) depends largely on the model

involved.

Proof has been given that the full-period method with the approximate Shift Jacobian

converges q-linearly if the derivatives of the model are relatively stable over time. But even

when they are not, as is the case with Multimod mark III, the method still performs well. Finally

some suggestions for further improvement have been made. The most important improvement

would be the modification of the ordering algorithm, since reducing the number of feedback

variables implies less calculations and less storage space needed for the Jacobian matrices.

35

36

Appendix A The standard Ordering method

This section contains a formal describtion of the standard ordering method used on the CPB for

models without rational expectations. As descibed in section 2, the aim of the ordering

procedure is to split a normalised simultaneous model in four parts:

Model



Set of Recursive prologue variables,Xp

Simultaneous block

 Set of Recursive simultaneous block equations,Xs

Set of Simultaneous feedback variablesXfb

Set of Recursive epilogue variables,Xe

Let theN×N incidence matrix of modelF(x) ∈ RN be defined such that

Mi, j =

0 if ∂ fi
∂ x j

= 0,∀x j ∈ R i, j → 1. . .N

1 otherwise

The prologue variables can now be determined by

Repeat

if ∑
j

Mi, j = 0 then add xi to the end of prologue Xp and delete row i and column i (A.1)

until no new xi are found.

For the epilogue set a similar rule can be followed.

Repeat

if ∑
i

Mi, j = 0 then add x j to the start of epilogue Xe and delete row j and column j (A.2)

until no new x j are found

The prologue set and epilogue set are ordered. The remaining equations form the simultaneous

block. The following phase is the selection of feedback variables. Once this is done, the rest of

the simultaneous block, orXs, can be ordered in the last phase.

The following rules are performed to select the smallest possible set of feedback variables

such that the remaining part of the model can be calculated recursively. A first selection of

feedback variables can be done by selecting the self dependent variables, occurring on the

diagonal ofM.

Repeat

if Mi,i = 1 then add xi to feedback set Xfb and delete row i and column i (A.3)

until no new xi are found.

37

Removing these variables may have changed the structure of the simultaneous block so that a

number of equations can now be ordered recursively.

Repeat

if ∑
j

Mi, j = 0 then delete row i and column i (A.4)

until no new xi are found.

If no more equations remain a minimal feedback set has been found to which a Newton

algorithm can be applied. However, if there are still equations remaining a substitution is

performed onM. In all equations determined by just one variable the left-hand side variable is

replaced by the right-hand side variable for all occurrences of the left-hand side variable, thus

removing a variable from the structure matrixM. All variablesxi used in just one equation are

replaced by the left-hand side variable of that equation, also removing a variable fromM.

Repeat

if ∑
j

Mi, j = 1∧Mi,p = 1 then Mi,k = Mi,k ⊕Mp,k k → 1. . .N (A.5)

delete row p and column p

until no new xi is found.

Here⊕ is the boolean-addition operator. And

Repeat

if ∑
i

Mi, j = 1∧Mp, j = 1 then Mp,k = Mp,k ⊕M j ,k k → 1. . .N (A.6)

delete row j and column j

until no new x j are found.

These substitutions may lead to the emergence of new self dependent variables. Therefore the

process from A.3 onward is repeated until no more variables are deleted or all variables have

been processed. After application of all these rules, it is possible that the matrixM is not yet

empty. In this case a heuristic rule is applied to select the variable that is most likely to occur in

the largest number of feedback loops.

find i:

maxi
((

∑
j

Mi, j
)(

∑
j

M j ,i
))

and add xi to feedback set Xfb (A.7)

and then continue with the substitution rules above untilM is empty.

Now the feedback set has been generated. An overview of the compression rules is given in

figure A.1.

38

Figure A.1 The compression rules

repeat

repeat

if Mi,i = 1 then add xi to feedback set Xfb and delete row i and column i (A.3)

until no new xi are found.

repeat

if ∑ j Mi, j = 0 then delete row i and column i (A.4)

until no new xi are found.

repeat

if ∑ j Mi, j = 1∧Mi,p = 1 then Mi,k = Mi,k ⊕Mp,k k → 1. . .N (A.5)

delete row p and column p

endif

until no new xi is found.

repeat

if ∑i Mi, j = 1∧Mp, j = 1 then Mp,k = Mp,k ⊕M j ,k k → 1. . .N (A.6)

delete row j and column j

endif

until no new x j are found.

until no new xi are found in this repeat-round.

if M 6= 0 then

find i for which maxi
((

∑ j Mi, j
)(

∑ j M j ,i
))

and add xi to feedback set Xfb (A.7)

endif

The last step is to order the recursive set of simultaneous equations,Xs. To do this the incidence

matrixM is regenerated. Then the following rules are applied to it:

foreach xi ∈ Xp delete row i and column i

foreach xi ∈ Xe delete row i and column i

foreach xi ∈ Xfb delete row i and column i

Repeat

if ∑
j

Mi, j = 0 then add xi to recursive simultaneous set Xs (A.8)

delete row i and column i

until M is empty.

When all feedback variables inXfb have been selected by A.3 (the selfloop rule) then the

feedback set is a minimal feedback set (see Levy and Low (1988) for a graph theoretical formal

proof).

An interesting extension to the ordering method described in this section is given in

Hasselman (2004), discussing a method to efficiently reduce the size of the feedback set by

detecting and removing redundant feedback variables.

39

40

Appendix B Proofs of Theorems

B.1 Proof of Local convergence for the ‘Shift Jacobian’

In this section the proof for local convergence of the Newton method with the Shift Jacobian is

given. For this purpose the Newton method for solvingF(x) = x

xn+1 = xn−
(
J(xn)− I

)−1(F(xn)−xn) (B.1)

is rewritten as

xn+1 = xn− J̃(xn)−1F̃(xn) (B.2)

by setting

F̃(xn) = F(xn)−xn

and

F̃ ′(xn) = J̃(xn) = J(xn)− I

so thatF̃(x∗) = 0 as in the standard Newton method.

Using the Shift Jacobian as an approximation toJ(xn) B.2 turns into

xn+1 = xn−
(
J̃(xn)+∆(xn)

)−1
F̃(xn) (B.3)

Let xN
n+1 be the result of the pure Newton step with the true JacobianJ̃(xn), then

xn+1 = xN
n+1 +

[
J̃(xn)−1−

(
J̃(xn)+∆(xn)

)−1]
F̃(xn) (B.4)

and

‖xn+1−x∗‖6 ‖xN
n+1−x∗‖+‖J̃(xn)−1−

(
J̃(xn)+∆(xn)

)−1‖‖F̃(xn)‖ (B.5)

From the proofs of local convergence of the Newton method (See Kelley (1995), section 5.1 and

Dennis, Jr. and Schnabel (1996), section 5.2) it is known that

‖xN
n+1−x∗‖6 K‖xn−x∗‖2

for eachxn ∈B(δ), where constantK = γ ‖F ′(x∗)−1‖ with γ the Lipschitz constant.

One of the basic Lemma’s from Kelley (1995) (Lemma 4.3.1) states that for eachx ∈B(δ)

‖F(x)‖6 2‖F ′(x∗)‖‖x−x∗‖

Substituting these results in B.5 gives

‖xn+1−x∗‖6 K‖xn−x∗‖2 +2‖J̃(xn)−1−
(
J̃(xn)+∆(xn)

)−1‖‖J̃(x∗)‖‖xn−x∗‖ (B.6)

41

Let ‖∆(xn)‖ be bounded so that

‖I −
(
J̃(xn)+∆(xn)

)−1
J̃(xn)‖6 δ1 < 1 (B.7)

This means that
(
J̃(xn)+∆(xn)

)−1
is an approximate inverse of̃J(xn). B.6 can be rewritten as

‖xn+1−x∗‖6 K‖xn−x∗‖2 +2‖J̃(xn)−1(I −
(
J̃(xn)+∆(xn)

)−1
J̃(xn)

)
‖‖J̃(x∗)‖‖xn−x∗‖

Now using B.7

‖xn+1−x∗‖6 K‖xn−x∗‖2 +2δ1‖J̃(xn)−1‖‖J̃(x∗)‖‖xn−x∗‖ (B.8)

The Lemma of Kelley (1995) (Lemma 4.3.1) also states that for eachx ∈B(δ)

‖F ′(x)−1‖6 2‖F ′(x∗)−1‖

So we get

‖xn+1−x∗‖6 K‖xn−x∗‖2 +4δ1‖J̃(x∗)−1‖‖J̃(x∗)‖‖xn−x∗‖ (B.9)

Sinceκ (A) = ‖A−1‖‖A‖, the condition number relative to‖.‖ this equals

‖xn+1−x∗‖6 K‖xn−x∗‖2 +4δ1κ (J̃(x∗))‖xn−x∗‖ (B.10)

and

‖xn+1−x∗‖6
[
Kδ +4δ1κ (J̃(x∗))

]
‖xn−x∗‖ (B.11)

which in terms of the original modelF(xn) gives:

‖xn+1−x∗‖6
[
Kδ +4δ1κ (J(x∗)− I)

]
‖xn−x∗‖ (B.12)

with κ (J(x∗)− I) being the condition number ofJ(x∗)− I . With δ andδ1 small enough the

iteration process converges q-linearly tox∗. This concludes the proof.�

B.2 Proof of the Upper Bound for ‖∆(xn)‖

This section gives the proof for the upper bound on‖∆(xn)‖ such that(J(xn)+∆(xn))−1 is an

approximate inverse ofJ(xn).

The necessary restriction on‖∆(xn)‖ for B.12 to be satisfied can be derived using the Banach

Lemma (see Kelley (1995), Theorem 1.2.1)

‖A−B−1‖=
‖A‖‖I −BA‖
1−‖I −BA‖

whereB is an approximate inverse ofA, and the definition of an approximate inverse (see Kelley

(1995), definition 1.2.1)

‖I −BA‖6 δ1 < 1

42

TakingA to beJ(xn) andB to be
(
J(xn)+∆(xn)

)−1
the definition becomes

‖I −
(
J(xn)+∆(xn)

)−1
J(xn)‖6 δ1 < 1 (B.13)

and the Banach Lemma evaluates to

‖J(xn)−
(
J(xn)+∆(xn)

)
‖=

‖J(xn)‖‖I −
(
J(xn)+∆(xn)

)−1
J(xn)‖

1−‖I −
(
J(xn)+∆(xn)

)−1
J(xn)‖

(B.14)

Using B.13 this results in an upper bound for‖∆(xn)‖

‖∆(xn)‖6
δ1‖J(xn)‖

1− δ1
(B.15)

which completes the proof.�

43

44

Appendix C Derivatives of feedback variables

C.1 Period-by-period case

This section shows how derivatives of the feedback variables (for the Jacobians) are calculated.

The ordering algorithm splits the model in several sections:

F(x)



Fp(x) prologue set

Fs(x) recursive part of the simultaneous set

Ffb(x) feedback part of the simultaneous set

Fe(x) epilogue set

(C.1)

For Newton type methods the Jacobian is calculated for the feedback variables only. Calculating

the partial derivative
∂ f i

fb(x)
∂ x j

wherex j is a feedback variable, would ignore the effects of the other

equations in the recursive simultaneous setFs(x). This set, together withFfb(x), forms the

simultaneous block of the model. To ensure all the simultaneous effects are taken into account in

calculating the derivatives the following term is calculated instead of a direct derivative of

function f i
fb

∂ f i
fb(Fs(x))

∂ x j
= f i ′

fb(Fs(x))
∂ Fs(x)

∂ x j
(C.2)

In words: first the effects of the change inx j on all functions ofFs are calculated and these are

then used to calculate the total effect on functionf i
fb.

For the implementation this means that in order to calculate the difference approximation

∇i ffb(x) we first give an impulse∆xi to xi , calculateFs(x +∆xiei) and then use the values ofFfb

to calculate the differences:

∇iFfb(x) =
Ffb(Fs(x +∆xiei))−Ffb(Fs(x))

∆xi
(C.3)

C.2 Intertemporal case

For the method presented in this paper not only current period derivatives are required, but also

derivatives of lags and leads. To capture the effects of a change in lags/leads on the current

period it is not sufficient to calculateFfb(Fs(x)), since this only takes current period effects into

account.

Suppose we want to capture the effect of a change inxi
t (with xi a feedback variable) on

function values in periodp. Then there are three cases to consider

• t < p, a lag impulse. To fully capture all the lag effects resulting from this impulse the complete

model has to be calculated from periodt−u to p (u being the maximum lead)

45

• t = p, a current period impulse. Here we also have to calculate the model from periodt−u to p,

sincexi
t may influenceFt−u(x)

• t > p, a lead impulse. Ift > p+u we have no effect otherwise we only calculateFp(x) to

capture the effects.

The three cases can be captured by the following general expression:

∇i,tFfb,p(x) =
Ffb,p(F(x +∆xi

t e
i
t))−Ffb,p(F(x))

∆xi
t

(C.4)

with F(x) ∈ RNT the vector of function values for all periods of the path.

46

References

Armstrong, J., R. Black, D. Laxton and D. Rose, 1995, A robust method for simulating

Forward-looking models, Part 2. Technical Report No. 72, Bank of Canada.

Dennis, Jr., J.E. and R.B. Schnabel, 1996,Numerical methods for unconstained optimization and

nonlinear equations, Classics in Applied Mathematics, SIAM.

Dixon, P., K. Pearson, M. Picton and M. Rimmer, 2005, Rational expectations for large CGE

models: A practical algorithm and a policy application,Economic Modelling, vol. 22, pp.

1001–1019.

Don, F. and G.M. Gallo, 1987, Solving large sparse systems of equations in econometric models,

Journal of Forecasting, pp. 167–180.

Draper, N. and E. Westerhout, 2002, Ageing, sustainability and the interest rate: the GAMMA

model,CPB-Report, vol. 2002/4, pp. 38–41.

Fair, R. and J. Taylor, 1983, Solution and Maximum likelihood estimation of dynamic nonlinear

rational expectations models,Econometrica, vol. 51, pp. 1169–1185.

Greenbaum, A., 1997,Iterative methods for solving linear systems, Frontiers in Applied

Mathematics, SIAM.

Hasselman, B.H., 2004, An efficient method for detecting redundant feedback vertices, CPB

Discussion Paper 29.

Kelley, C.T., 1995,Iterative methods for linear and nonlinear equations, Frontiers in Applied

Mathematics, SIAM.

Laxton, D., P. Isard, H. Faruqee, E. Prasad and B. Turtelboom, 1998, Multimod mark III, The

core dynamics and steady state models, IMF Occasional Papers 164, IMF.

Levy, H. and D.W. Low, 1988, A contraction algorithm for finding small cycle cutsets,Journal

of Algorithms, pp. 470–493.

Pauletto, G., 1997,Computational solution of Large-Scale Macroeconometric models, vol. 7 of

Advances in Computational Economics, Kluwer Academic Publishers.

47

48

