
CPB Discussion Paper

No 41

22th November 2004

Refinement of the partial adjustment model using continuous-time econometrics

Arie ten Cate

The responsibility for the contents of this CPB Discussion Paper remains with the author(s)



CPB Netherlands Bureau for Economic Policy Analysis

Van Stolkweg 14

P.O. Box 80510

2508 GM The Hague, the Netherlands

Telephone +31 70 338 33 80

Telefax +31 70 338 33 50

Internet www.cpb.nl

ISBN 90-5833-199-7



Abstract in English

This paper presents some suggestions for the specification of dynamic models. These

suggestions are based on the supposed continuous-time nature of most economic processes. In

particular, the partial adjustment model –or Koyck lag model– is discussed.

The refinement of this model is derived from the continuous-time econometric literature. We

find three alternative formulas for this refinement, depending on the particular econometric

literature which is used. Two of these formulas agree with an intuitive example.

In passing, it is shown that that the continuous-time models of Sims and Bergstrom are closely

related. Also the inverse of Bergstrom’s approximate analog has been introduced, making use of

engineering mathematics.

Abstract in Dutch

Dit Discussion Paper presenteert enige suggesties voor de specificatie van dynamische modellen.

Deze suggesties zijn gebaseerd op de veronderstelling dat economische processen zich in

continue tijd afspelen. In het bijzonder wordt besproken het model van de geleidelijke

aanpassing, of Koyck model.

De verfijning van dit model is afgeleid van de econometrische literatuur over continue tijd. We

vinden drie alternatieve formules voor deze verfijning, afhankelijk van welke econometrische

literatuur wordt gebruikt. Twee van deze formules komen overeen met een intuitief voorbeeld.

In het voorbijgaan wordt aangetoond dat de modellen in continue tijd van Sims en Bergstrom

nauw verwant zijn. Ook wordt de inverse van Bergstrom’s benaderend analogon geïntroduceerd,

gebruik makend van ingenieurswiskunde.
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Summary

Econometric modeling often involves some dynamics, in the form of lagged variables, or

differences over time, etcetera. Unfortunately, economic theory may tell us what variables are

relevant, but is usually only marginally informative about their dynamics.

This paper explores a guideline for the specifications of dynamics, derived from a very

general principle: the nature of time. Very few economic processes run intermittently, with the

annual or quarterly frequency of empirical data series. Most proceed continuously from day to

day. Production, consumption, and investments are not done at January 1, or the first day in each

quarter, but are spread over time.

This simple fact has been the subject of much research; both about the problems involved in

ignoring this fact, and about the estimation of continuous-time models. Here we ask: can we use

this research to find simple and practical recipes for the specification of dynamic economic

relations, in discrete time?

In particular, the partial adjustment model -or Koyck lag model- is studied. Here the

dependent variable adapts gradually to changes in the independent variable, using the lagged

value of the dependent variable. An alternative form of this model is the exponential distributed

lag model. The limiting case of this model is infinitely slow adaptation, with amounts to the

dependent variable being the cumulated independent variable.

First, the problem is discussed using a simple intuitive example of the limiting “cumulative”

case: capital accumulation. Assuming investment takes place continually, the form of the

relation between annual production capacity and annual investment is discussed.

Next, the continuous-time econometric literature is used to derive results more formally. The

work of Sims (1971) is applied to our partial adjustment model in the distributed lag form. The

models of Bergstrom are applied to our partial adjustment model in the usual difference equation

form.

The result is a simple suggestion: the partial adjustment model should be refined by adding a

term with the lagged independent variable to the right-hand side. The specific form of this term

varies with the approach chosen. In the simplest case, the lagged and the current independent

variable have the same coefficient. Two more complicated formulas for the coefficient of the

lagged independent are suggested. One of them, derived from the widely used quadratic exact

discrete-time analog of Bergstrom conflicts with the intuitive investment example.

In doing so, it has been shown that continuous-time models of Sims and Bergstrom are

closely related. Also the inverse of Bergstrom’s approximate analog has been introduced,

making use of engineering mathematics. This analog is known in the engineering literature,

where it is expressed in entirely different notation.
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1 Introduction

Econometric modeling often involves some dynamics, in the form of lagged variables, or

differences over time, etc. Unfortunately economic theory may tell us what variables are

relevant, but is usually only marginally informative about their dynamics. This paper explores a

guideline for the specifications of the dynamics, derived from a very general principle: the

nature of time.

Very few economic processes run intermittently, with the annual or quarterly frequency of

empirical data series. Most proceed continuously from day to day. Production, consumption, and

investments are not done at January 1, or the first day in each quarter, but are spread over time.

This simple fact has been the subject of much research; both about the problems involved in

ignoring this fact, and about the estimation of continuous-time models. See for instance the

references in Ten Cate (1993) and in the more recent McCrorie and Chambers (2004). Here we

ask: can we use this research to find simple and practical recipes for the specification of dynamic

economic relations, in discrete time? This question is answered affirmative for the partial

adjustment model.

In the next section an intuitive example is given, showing the effect of continuous time

modeling on a dynamic equation in discrete time. Section 3 discusses details about continuous

time.

In sections 4 through 7 refinements of the partial adjustment model

Yt = ρYt−1 +φ Xt (1.1)

are derived from an assumed underlying continuous-time model, using two approaches:

• In section 4 the continuous-time analysis of distributed lags of Sims (1971) is applied to the

partial adjustment model in the form of a distributed lag model.

• In sections 5 through 7 the analysis of differential equations as initiated in Bergstrom (1966) is

applied to the partial adjustment model in the form of a difference equation.

It is shown that these two approaches are closely related.

Section 8 discusses the reverse problem: what underlying continuous-time model is implied

by the partial adjustment model (1.1) without these refinements?

Section 9 sums up the results. Mathematical derivations are put into three Appendices. In

Appendix B a relation between engineering mathematics and continuous-time econometrics is

used, which seems to have been overlooked in the literature.
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2 An intuitive example

As an example we consider the production capacityYt created by investment in equipmentXt .

For simplicity, the investments are assumed to be immediately usable for production, without

gestation lag.

Then the model equation for the production capacity should take into account only one half

of the investment figure of the current time period. Why? With all current period investment in

the equation, the production capacity would represent the stock of capital accumulated at theend

of the period. On the other hand, a zero coefficient for current period investment would represent

the stock of capital at thebeginningof the period. Otherwise stated: since on the average the

current period has elapsed for one half, the investment during the current period must be taken

into account for one half.

This can be written as:

Yt =
1
κ

(
1
2

Xt +Xt−1 +Xt−2 + · · ·
)

(2.1)

with capital coefficientκ and (net) investmentsXt . Thus the lag distribution of the investments

in the equation for production capacity has a peculiar shape at the near end, due to the

assumption that (macro) investments flow continually throughout the time period. Several

macro-economic models of the CPB have an equation for production capacity in this form. This

example will recur repeatedly in the formal analysis below.

Individual investment projects are usually not evenly distributed within the discrete time

periods of the data series. If it were known that such projects are usually late/early within the

time periods, then the above coefficient of one half should be somewhat smaller/larger. In the

absence of such knowledge, however, the above equation is the most likely.

In the sequel we shall discuss in detail what time pattern of the investments is required for

(2.1) to hold exactly; as we shall see at the end of section 4 below, it is not necessary that the

investments are constant within the discrete time periods.

The approaches discussed below are based on various assumptions about the time pattern of

the exogenous variableXt . These assumptions may or may not be very realistic.However,

ignoring the discussion in this paper altogether also implies some assumption about this pattern,

which might be entirely unrealistic.For example, to base the production capacity in (2.1) on the

summation ofall investments implies that investments are indeed always done at January 1, or

–in a quarterly model– at the first day in each quarter. Barring this, there must be some odd

relation between the two underlying continuous-time seriesy andx, other than dy/dt = x/κ ;

more about this in section 8 below.
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3 Continuous time

Let us assume that the data generating process runs in continuous time1, with continuous-time

seriesy(t) andx(t). Without loss of generality the length of the discrete time period is unity.

Assuming the variables are flows, observed discrete-time seriesYt andXt are defined for integert

as

Yt ≡
∫ t+1

t
y(τ )dτ (3.1)

and

Xt ≡
∫ t+1

t
x(τ )dτ (3.2)

respectively. We shall also use the moving sum

Ξ(t)≡
∫ t+1

t
x(τ )dτ (3.3)

defined for realt. For integert we haveΞ(t) = Xt .

In continuous-time econometrics much effort has been put into the mathematics of the error

term and of continuous-time stochastics in general. However, throughout this paper any error

term is ignored: the systematic part of the model equations is enough to make our point. Notice

that in the discussion in the previous section, no error term is involved.

The time pattern of the exogenous variable in continuous time is relevant here, as is clear

from the discussion at the end of the previous section.

Finally notice that ifYt were the capital stock, dated, say, at the beginning of the time

periods, we would simply haveYt ≡ y(t) instead of definition (3.1). Then the term with one half

in equation (2.1) must be removed. However, in this paper only relations between flows are

studied. These relations might be any kind of behavioral relation; not only book-keeping

relations such as equation (2.1).

1 Alternatively, one might assume a data generating process in discrete time, with a higher frequency than the observed

data. See e.g. (Maddala, 1977, pp. 374-376) and the references cited there. This give roughly the same result as we will

find in this paper: estimate a “geometrically declining lag distribution leaving the first coefficient free”.
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4 Sims’ distributed lags

The basic reference equation of this paper is the partial adjustment model (1.1). The speed of

adjustment to a change inXt is determined byρ . Stability requires−1 < ρ < 1. Special attention

will be paid to the limiting caseρ → 1.

The inclusion of the exogenousXt is essential here. Otherwise we would have a “pure” time

series model, such as Chambers (1999) and Teles and Wei (2000), and most of the modern

continuous-time finance models.

An alternative representation of equation (1.1), with an exponentially distributed lag, is as

follows:

Yt = φ

∞

∑
k=0

ρ
kXt−k (4.1)

The relation between equations (1.1) and (4.1) is known in econometrics as the Koyck transform;

see Koyck (1954). In this paper we will repeatedly switch between these two equivalent forms.

In Sims (1971) distributed lags are discussed. As in the intuitive investment example above,

Sims assumed that the actual process takes place in continuous time. Since in practice one works

with discrete-time data, he proposed several discrete-time approximations to the underlying

continuous-time distributed lag. The coefficients of these discrete-time approximations are a

moving average over the assumed underlying continuous lag distribution2.

In this case we assume of course that the underlying continuous-time lag distribution is

exponential:

y(t) = φc

∫ ∞

0
ρ

sx(t−s)ds (4.2)

with someφc. The relation betweeny(t) andYt (and betweenx(t) andXt ) was discussed in

section 3 above. Sinces is not restricted to integers,ρ must be positive, resulting in 0< ρ < 1.

In our Appendix A, one of Sims’ discrete-time approximations is applied to continuous-time

lag distribution (4.2), and it is shown that indeed this produces an exponential discrete-time lag

distribution, with exponentρ . This result is transformed back to the autoregressive form, giving:

Yt = ρYt−1 +φ (Xt + rXt−1) (4.3)

with

r ≡ 1−ρ +ρ logρ

ρ −1− logρ
(4.4)

and withφ proportional3 to φc.

2 In Ten Cate (1993) this is applied to polynomial lag distributions (Almon lag distributions).

3 Note that the relation between φ and φc is not relevant here, since our purpose is to find a good discrete-time model,

and not to express a discrete-time model in terms of continuous-time parameters. Also, in the discrete-time equations in

this paper the parameters φ and ρ are not labeled to distinguish between their different continuous-time origin.
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Hence it is better to use equation (4.3) instead of the naive equation (1.1) if one assumes that the

actual process takes place in continuous time. Note that in addition to the laggedYt , the proposed

equation (4.3) also has a laggedXt in the equation. This does not increase the number of

parameters, however, sincer is a known function ofρ .

With 0 < ρ < 1 we have 0< r < 1. More specifically, for smallρ we have a smallr , and for

largeρ we have:

lim
ρ→1

r = 1 (4.5)

Hence forρ → 1:

Yt = Yt−1 +φ (Xt +Xt−1) (4.6)

Integrated over time:

Yt = 2φ

(
1
2

Xt +Xt−1 +Xt−2 + · · ·
)

(4.7)

This is the form of the relation between production capacity and investment in equation (2.1),

with 1/κ = 2φ .

As discussed in Ten Cate (1993), equation (4.3) above, and hence also equations (4.6) and

(4.7), are exact ifΞ(t), defined in (3.3), is piece-wise linear, i.e. linear within the discrete time

periods. This amounts to the original seriesx(t) having an arbitrary additive seasonal pattern;

this is slightly more general thanx(t) being constant within the time periods4.

4 This might seem to contradict the intuition developed in section 2 above, with the investment example: doesn’t it matter

whether this seasonal pattern has its highest value early or late within the period? Note that early investments contribute

more to the production capacity than late investments. To solve this puzzle, assume that this seasonal pattern consists of

the investment of one machine every year, at the same date in each year. Now let us shift this date backwards in time –

say one month. Then indeed in every year the production capacity Yt increases with one month’s production capacity of

this machine. However, this has no effect on the difference Yt −Yt−1, and hence it leaves equation (4.6) unchanged. Of

course equation (4.3) is more complicated; here is no effect on Yt −ρYt−1.
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5 Bergstrom’s approximate analog

In this section and the next two sections, we start from the partial adjustment equation (1.1),

written as a difference equation:

∆Yt = φ Xt − (1−ρ)Yt−1 (5.1)

with the difference∆ defined by∆Yt ≡Yt −Yt−1. One might assume then that the data are

actually generated in continuous time by a differential equation:

dy(t)
dt

= φcx(t)− γ y(t) (5.2)

with γ > 0. With

γ =−logρ (5.3)

the differential equation (5.2) is equivalent with the continuous-time distributed lag equation

(4.2); they are related by the continuous-time Koyck transformation5.

Bergstrom (1966) studied difference equations as discrete-time analogs of differential

equations. This has resulted in a lot of follow-up research; see for instance the review in

Bergstrom (1993).

Bergstrom’s approximate discrete-time analog of equation (5.2) is defined by replacing the

differential by the difference and the levels by averages over time:

∆Yt = φc
Xt +Xt−1

2
− γ

Yt +Yt−1

2
(5.4)

or, with the left-hand side written as in our basic partial adjustment equation (1.1):

Yt = ρaYt−1 +φ (Xt +Xt−1) (5.5)

with φ proportional toφc and with theρa (where thea indicates ‘approximate’):

ρa =
2− γ

2+ γ
(5.6)

which is smaller thanρ = exp(−γ ) as in (5.3) above. This is especially relevant in the

continuous-time literature, where the purpose is to translate an estimate ofρ back to the

underlying continuous-timeγ parameter6. However, for the present analysis it matters only that

5 See for instance (Wymer, 1993, p.39, note 1). In engineering language it is said that the system (5.2) is described by the

distributed lag equation (4.2) using the convolution of the impulse response function h(t) = ρ
t with the input x(t); see for

instance Oppenheim and Willsky (1983), equation (3.54) at p.98, or Sinha (1991), equation (2.86) at p.74.

6 It has been overlooked in the econometrical continuous-time literature that γ > 2 is equivalent to a negative ρa in (5.6)

and hence an oscillating Yt in (5.5), which is incompatible with an assumed underlying first-order continuous-time system.

Hence the estimated mean lag 1/γ in model (5.2) can not be smaller than one half of the unit time period. In other words,

this is not applicable to ‘fast’ models – or seemingly fast models, in fact. This limitation holds also for higher-order models.

See Ten Cate (2002), where it is also shown that this method is the same as the Tustin transformation, or Bilinear

transformation, in engineering.
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there is no assumption about the time pattern ofx(t), or Ξ(t), for which there is an equation of

the form of (5.5) with arbitraryρ that holds exactly if the underlying continuous-time model is

equation (5.2), sinceρa 6= ρ for anyγ > 0. Hence its name: the approximate analog.

In summary: as in the previous section, taking account of the continuous-time nature of the

underlying process introduces a term with the laggedXt in the right-hand side of (5.5). Compare

with the result (4.3) in the previous section: lagged and unlaggedXt always have the same

coefficient here.
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6 Bergstrom’s exact quadratic analog

Bergstrom’s exact discrete-time analog of equation (5.2) is derived from solving fory(t) over

time, starting from, say,y(0), and computing the discrete-timeYt from this solution. The

continuous-time seriesx(t) does not appear in the result. This is achieved by using an

assumption about its time pattern: a quadratic function of time. Appendix C shows this for a

slightly different case, discussed in the next section. Here we have:

Yt = ρYt−1 +φ

(
Xt +

r1

r0
Xt−1 +

r2

r0
Xt−2

)
(6.1)

with

r0 ≡
(
−γ

−3 +
1
2

γ
−2
)

ρ + γ
−3− 3

2
γ
−2 + γ

−1 (6.2)

r1 ≡
(

2γ
−3− γ

−1
)

ρ −2γ
−3 +2γ

−2 (6.3)

r2 ≡
(
−γ

−3− 1
2

γ
−2
)

ρ + γ
−3− 1

2
γ
−2 (6.4)

and withγ defined according to (5.3) and withφ proportional toφc. See for instance (Wymer,

1993, p. 49).

With flows this is exact in the sense that ifΞ(t), defined in (3.3), is quadratic then (6.1)

satisfies the differential equation (5.2) exactly. (With stocks, the seriesx(t) itself must be

quadratic.) Since the series must be quadratic over each pair of adjacent time periods, it must be

quadratic over theentiretime range, thus excluding business cycles.

With γ → 0 we haveρ → 1, the case discussed several times above, related to the intuitive

example in section 2. Using the third order approximationρ = exp(−γ )≈ 1− γ + γ
2/2− γ

3/6

it is easily shown that equation (6.1) becomes in this case:

∆Yt = φ

(
Xt +

8
5

Xt−1−
1
5

Xt−2

)
(6.5)

Integrated over time we have:

Yt =
12
5

φ

(
5
12

Xt +
13
12

Xt−1 +Xt−2 +Xt−3 + · · ·
)

(6.6)

This differs slightly from Sims’ result in equation (4.7) above.
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7 Bergstrom’s exact linear analog

Although traditionally Bergstrom’s exact analog is used with a quadratic assumption as in the

previous section, it can also be used with a linear assumption. LetΞ(t) be piecewise linear, as

with Sims’ approach, discussed in section 4 above. In Appendix C it is shown that then equation

(6.1) simplifies to

Yt = ρYt−1 +φ

(
Xt +

r ∗1
r ∗0

Xt−1

)
(7.1)

with

r ∗0 ≡ γ
−2

ρ − γ
−2 + γ

−1 (7.2)

r ∗1 ≡ −
(

γ
−2 + γ

−1)
ρ + γ

−2 (7.3)

φ ≡ r ∗0φc (7.4)

It is easily seen that this can be written as Sims’ equations (4.3) and (4.4) above:

r =
r ∗1
r ∗0

=
−
(

γ
−2 + γ

−1
)

ρ + γ
−2

γ −2ρ − γ −2 + γ −1 =
−(1+ γ )ρ +1

ρ −1+ γ
=

1−ρ +ρ logρ

ρ −1− logρ
(7.5)

using relation (5.3). This should not come as a surprise, since the two methods are based on

equivalent models and they require the same time pattern ofΞ(t) to be exact.
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8 The inverse approximate analog

As a step aside from the main theme of this paper, it might be interesting to see what

continuous-time model is implied if the extra term withXt−1 in the various difference equations

above is not included.

For this purpose the inverse of Bergstrom’s approximate analog is derived in Appendix B,

using the engineering literature. This inverse analog is found by replacing the discrete-time lag

operator by the continuous-time operator (2−d/dt)/(2+d/dt). This is applied to the “naive”

discrete-time model equation (5.1), or (1.1), showing that this model implies at the continuous

time level:

dy(t)
dt

= φcx(t)− γ y(t)+
1
2

φc
dx(t)

dt
(8.1)

This differs from the continuous-time model (5.2) by the term with dx(t)/dt. Here the

adjustment to a shock inx(t) is no longer the exponential path defined byγ . In fact the very

notion of a shock inx(t) is a problem here, since at the moment of the shock the derivative

dx(t)/dt does not exists.

Substitutingγ = 0 andφc = 1/κ into equation (8.1) gives us the “odd” relation mentioned at

the end of section 2:

dy(t)
dt

=
1
κ

(
x(t)+

1
2

dx(t)
dt

)
(8.2)

Here the production capacity increases not only with investment, but also with the increase of

investment! It is easily seen that Bergstrom’s approximate analog of this equation is indeed the

naive

∆Yt =
1
κ

Xt (8.3)

withoutXt−1, or

Yt =
1
κ

(Xt +Xt−1 +Xt−2 + · · ·) (8.4)

without the one half which occurs in equation (2.1).
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9 Conclusion

Most economic processes run more or less continuously in time, from day to day, and not with

the frequency of the empirical data such as yearly or quarterly or monthly. The proposition of

this paper is that nevertheless modeling in the low frequency of the data makes sense, if the

proper dynamic specification is chosen. First, this has been discussed using a simple intuitive

example. Next, the continuous-time econometric literature has been used to demonstrate this

more formally. It has been shown that the continuous-time models of Sims and Bergstrom are

closely related. The inverse of Bergstrom’s approximate analog has been introduced and used.

The result is a simple suggestion: a partial adjustment model such as (1.1) might be refined

by adding a term withXt−1 to the right-hand side. The specific form of this term varies with the

approach chosen, as follows.

• Bergstrom’s approximate discrete-time analog implies that this term is simply equal to

φ Xt−1 (9.1)

whereφ is the coefficient of the unlaggedXt . See equation (5.5) above.

• Based on Sims’ work, it is suggested to multiply (9.1) with a specific function ofρ . See equation

(4.3) above. Forρ → 1 this function tends to unity, reducing the term to (9.1). See equation (4.6)

above.

The linear form of Bergstrom’s exact discrete-time analog gives the same result. See equation

(7.1) above.

• Bergstrom’s standard quadratic exact discrete-time analog also suggests such a function. This

function tends to 1.6 forρ → 1. Also a term withXt−2 is included here. See equation (6.5) above.

Apart from empirical evidence of course, I tend to prefer the first two methods, which can

reproduce the intuitive example in section 2. The third method cannot do this.

25



26



Appendix A The equations (4.3) and (4.4)

A.1 Sims’ approach

In this section we summarize Sims’ approach, following Sims (1971). Consider the following

distributed-lag equation, with lag operator L defined by LkXt ≡ Xt−k:

Yt =

(
∞

∑
k=0

bkLk

)
Xt (A.1)

In the case of a finite length lag distribution, we havebk = 0 beyond the lag length.

The general form of the underlying continuous-time distributed lag model is:

y(t) =
∫ ∞

0
β (s)x(t−s)ds (A.2)

In general it is not possible to obtain the discrete-time lag equation (A.1) by substituting the

continuous-time lag equation (A.2) into definition (3.1): one does not get rid of the

continuous-timex(t). Sims (1971) suggested several methods to solve this problem based on

assumptions aboutx(t). One of these methods, based on (Sims, 1971, Proposition A) gives the

coefficientsbk in (A.1) as a weighted moving average overβ :

bk =
∫ 1

−1
(1−|s|)β (k +s)ds

=
∫ 0

−1
(1+s)β (k +s)ds+

∫ 1

0
(1−s)β (k +s)ds (A.3)

for k = 1,2,3, . . . The weighting function has the form of a ‘tent’: the function 1−|s| with

−1≤ s≤ 1. This local weighting smoothes any sharp peak in the continuous-time lag

distribution. In a sense, observing in discrete time is like being unable to see sharp outlines

while looking through fog.

It is assumed thatβ (s) vanishes for negatives, as indeed in equation (A.2). This is

equivalent toy being dependent only on the past and present ofx, and not on the future ofx.

Then fork = 0 we have:

b0 =
∫ 1

0
(1−s)β (s)ds (A.4)

Thus,b0 misses the left half of the tent, due toβ (s) being zero for negatives. Notice that ifβ is

constant at the near end, thenb0 is one half ofb1, as in the intuitive example in section 2.

See the end of section 4 above for a discussion of the cases in which this approach is exact.

A.2 Sims’ approach applied to the exponential lag distribution

Let the continuous-time lag distribution be as in model (4.2):

β (s) = φcρ
s (A.5)
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The approximate discrete-time lag distribution based on Sims (1971) is found by substituting

(A.5) into equation (A.3). Then fork = 1,2,3, . . . we have:

bk = φc

∫ 0

−1
(1+s)ρ

k+sds+φc

∫ 1

0
(1−s)ρ

k+sds

=
φc

logρ

[(
1+s− 1

logρ

)
ρ

k+s
]0

s=−1

+
φc

logρ

[(
1−s+

1
logρ

)
ρ

k+s
]1

s=0

=
φc

logρ

((
1− 1

logρ

)
ρ

k +
1

logρ
ρ

k−1

+
1

logρ
ρ

k+1−
(

1+
1

logρ

)
ρ

k
)

=
φc

(logρ)2 ρ
k
(

ρ −2+
1
ρ

)
= aρ

k (A.6)

with

a≡ φc

(logρ)2

(
ρ −2+

1
ρ

)
(A.7)

Hence the approximate discrete-time lag distribution is indeed exponential as well, with the

same decay rate parameterρ as in the assumed underlying continuous-time lag distribution.

In order to find the current period coefficientb0, assumption (A.5) is also substituted into

equation (A.4):

b0 = φc

∫ 1

0
(1−s)ρ

sds

=
φc

logρ

[(
1−s+

1
logρ

)
ρ

s
]1

s=0

= φc (ρ −1− logρ)/(logρ)2 (A.8)

Thus at the discrete-time level we have the exponential lag distributionbk = aρ
k; however

with the current period coefficientb0 not equal toa. The factorb0/a is a monotonously

increasing function ofρ . With 0< ρ < 1 we have 0< b0/a < 1
2. More precisely:

lim
ρ→1

b0

a
=

1
2

(A.9)

Here the lag distributionβ is near constant and the current-period factorb0/a is near one half.

Compare with the investment example of section 2, where it is one half.

For smallerρ (faster rate of decay) the current-period factorb0/a is even smaller. To give a

specific example: ifρ = 0.5 thenb0/a = 0.39; in that case the lag distribution is not equal to

1 0.5 0.25 0.125 · · · (A.10)

but equal to

0.39 0.5 0.25 0.125 · · · (A.11)
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The sharp peak at the near end of the lag distribution is indeed smoothed as noted after equation

(A.3) above. If (A.11) is normalized to add up to unity then it resembles quite closely Fig. 6.6b

in (Hendry, 1995, p. 217)); withρ = 0.55 the two distributions are very close7.

The results (A.6) through (A.8) can be transformed back to the autoregressive form, with the

laggedYt , as follows. The equations for the coefficients in (A.6) and (A.8) are substituted into

the lag distribution of (A.1):

Yt =

(
∞

∑
k=0

bkLk

)
Xt

=

(
b0 +a

∞

∑
k=1

ρ
kLk

)
Xt

=
(

b0 +
aρL

1−ρL

)
Xt (A.12)

Hence:

(1−ρL)Yt = (b0 (1−ρL)+aρL)Xt

= (b0 +(a−b0)ρL)Xt

= (1+ r L)b0Xt

= (1+ r L)φ Xt (A.13)

with:

r ≡ (a−b0)ρ

b0
=

1−ρ +ρ logρ

ρ −1− logρ
(A.14)

and

φ ≡ b0 = φc (ρ −1− logρ)/(logρ)2 (A.15)

7 I got the idea to write this paper when I saw this lag distribution in Hendry’s book.
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Appendix B The equation (8.1)

In order to derive equation (8.1), the inverse of Bergstrom’s approximate analog is introduced,

for the linear case. As discussed in section 5 above, Bergstrom’s analog is obtained by replacing,

for an arbitrary seriesy(t), the differential quotient dy(t)/dt by the difference∆Yt ≡Yt −Yt−1,

and the levely(t) by the mean(Yt +Yt−1)/2. It is assumed without loss of generality that the

discrete time unit is of length one.

For linear models, these two operations can be combined by replacing the differential

quotient by the difference divided by the mean:

D =
∆

1
2(1+L)

(B.1)

or

D = 2
1−L
1+L

(B.2)

where D is the differential operator d/dt and as before the lag operator L is defined by

LYt ≡Yt−1. It is easily verified that in this way differential equation (5.2) is indeed transformed

into equation (5.5). (Notice that in this way also Bergstrom’s approximate analog of higher order

equations can be found without first decomposing them into first order equations.)

In the engineering literature of dynamic systems this transformation is called the Bilinear

Transformation or the Tustin transformation, and written as:

s = 2
z−1
z+1

(B.3)

wheres andz are the Laplace transform variable and the z-transform variable respectively. In

the context of linear models,s coincides with D andz−1 coincides with L. See Ten Cate (2002),

where the hitherto overlooked relation between continuous-time econometrics and engineering

mathematics is discussed. See also for instance Sinha and Rao (1991) for a discussion of the

relation between continuous and discrete time models in engineering language.

The inverse of (B.2) is:

L =
2−D
2+D

(B.4)

Note that this is of the same form as relation (5.6). As shown in Ten Cate (2002), this holds

more in general: the relation between the two operators is the same as the relation between the

roots of the characteristic equations.

Equation (B.4) is applied to difference equation (5.1), or its equivalent (1.1), giving:(
1−ρ

2−D
2+D

)
y(t) = φ x(t) (B.5)

This can be rewritten as follows, proving equation (8.1):

Dy(t) =
1

1+ρ
(−2(1−ρ)y(t)+2φ x(t)+φ Dx(t))
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= −γ y(t)+
1

1+ρ
(2φ x(t)+φ Dx(t))

= −γ y(t)+φcx(t)+
1
2

φcDx(t) (B.6)

using (5.6) and defining:

φc ≡
2

1+ρ
φ (B.7)

32



Appendix C The equations (7.1) – (7.4)

To make this paper more self contained, the derivation is given of the linear form of Bergstrom’s

exact analog. The solution of differential equation (5.2) satisfies for all realτ :

y(τ ) = e−γ y(τ −1)+
∫ 1

0
e−γ s

φcx(τ −s)ds

= ρy(τ −1)+φc

∫ 1

0
ρ

sx(τ −s)ds (C.1)

Integration overt ≤ τ ≤ t +1 for integert gives:

Yt = ρYt−1 +φc

∫ t+1

t

∫ 1

0
ρ

sx(τ −s)dsdτ

= ρYt−1 +φcZt (C.2)

with

Zt ≡
∫ t+1

t

∫ 1

0
ρ

sx(τ −s)dsdτ

=
∫ 1

0
ρ

s
∫ t+1

t
x(τ −s)dτ ds

=
∫ 1

0
ρ

sΞ(t−s)ds (C.3)

whereΞ is defined in (3.3). AssumingΞ is piecewise linear we have for integert and 0≤ s≤ 1:

Ξ(t−s) = Ξ(t)+s(Ξ(t−1)−Ξ(t))

= Xt +s(Xt−1−Xt) (C.4)

Then

Zt =
∫ 1

0
ρ

s (Xt +s(Xt−1−Xt))ds

= Xt

∫ 1

0
ρ

s(1−s)ds+Xt−1

∫ 1

0
ρ

ssds

= r ∗0Xt + r ∗1Xt−1 (C.5)

with:

r ∗0 ≡
∫ 1

0
ρ

s(1−s)ds

=
[(
−γ

−1 +sγ
−1 + γ

−2)
ρ

s]1
s=0

= γ
−2

ρ − γ
−2 + γ

−1 (C.6)

and

r ∗1 ≡
∫ 1

0
ρ

ssds

=
[
−
(

γ
−2 +sγ

−1)
ρ

s]1
s=0

= −
(

γ
−2 + γ

−1)
ρ + γ

−2 (C.7)
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Then

(1−ρL)Yt = φcZt

= φc(r ∗0 + r ∗1L)Xt

= φ (1+
r ∗1
r ∗0

L)Xt (C.8)

with

φ ≡ r ∗0φc (C.9)

As in the other Appendices, use has been made of the lag operator L defined by LkYt ≡Yt−k.
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