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Abstract in English

This paper presents some suggestions for the specification of dynamic models. These
suggestions are based on the supposed continuous-time nature of most economic processes. In
particular, the partial adjustment model —or Koyck lag model- is discussed.

The refinement of this model is derived from the continuous-time econometric literature. We

find three alternative formulas for this refinement, depending on the particular econometric
literature which is used. Two of these formulas agree with an intuitive example.

In passing, it is shown that that the continuous-time models of Sims and Bergstrom are closely
related. Also the inverse of Bergstrom’s approximate analog has been introduced, making use of
engineering mathematics.

Abstract in Dutch

Dit Discussion Paper presenteert enige suggesties voor de specificatie van dynamische modellen.
Deze suggesties zijn gebaseerd op de veronderstelling dat economische processen zich in
continue tijd afspelen. In het bijzonder wordt besproken het model van de geleidelijke
aanpassing, of Koyck model.

De verfijning van dit model is afgeleid van de econometrische literatuur over continue tijd. We
vinden drie alternatieve formules voor deze verfijning, afhankelijk van welke econometrische
literatuur wordt gebruikt. Twee van deze formules komen overeen met een intuitief voorbeeld.

In het voorbijgaan wordt aangetoond dat de modellen in continue tijd van Sims en Bergstrom
nauw verwant zijn. Ook wordt de inverse van Bergstrom’s benaderend analogon geintroduceerd,

gebruik makend van ingenieurswiskunde.
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Summary

Econometric modeling often involves some dynamics, in the form of lagged variables, or
differences over time, etcetera. Unfortunately, economic theory may tell us what variables are
relevant, but is usually only marginally informative about their dynamics.

This paper explores a guideline for the specifications of dynamics, derived from a very
general principle: the nature of time. Very few economic processes run intermittently, with the
annual or quarterly frequency of empirical data series. Most proceed continuously from day to
day. Production, consumption, and investments are not done at January 1, or the first day in each
quarter, but are spread over time.

This simple fact has been the subject of much research; both about the problems involved in
ignoring this fact, and about the estimation of continuous-time models. Here we ask: can we use
this research to find simple and practical recipes for the specification of dynamic economic
relations, in discrete time?

In particular, the partial adjustment model -or Koyck lag model- is studied. Here the
dependent variable adapts gradually to changes in the independent variable, using the lagged
value of the dependent variable. An alternative form of this model is the exponential distributed
lag model. The limiting case of this model is infinitely slow adaptation, with amounts to the
dependent variable being the cumulated independent variable.

First, the problem is discussed using a simple intuitive example of the limiting “cumulative”
case: capital accumulation. Assuming investment takes place continually, the form of the
relation between annual production capacity and annual investment is discussed.

Next, the continuous-time econometric literature is used to derive results more formally. The
work of Sims (1971) is applied to our partial adjustment model in the distributed lag form. The
models of Bergstrom are applied to our partial adjustment model in the usual difference equation
form.

The result is a simple suggestion: the partial adjustment model should be refined by adding a
term with the lagged independent variable to the right-hand side. The specific form of this term
varies with the approach chosen. In the simplest case, the lagged and the current independent
variable have the same coefficient. Two more complicated formulas for the coefficient of the
lagged independent are suggested. One of them, derived from the widely used quadratic exact
discrete-time analog of Bergstrom conflicts with the intuitive investment example.

In doing so, it has been shown that continuous-time models of Sims and Bergstrom are
closely related. Also the inverse of Bergstrom’s approximate analog has been introduced,
making use of engineering mathematics. This analog is known in the engineering literature,

where it is expressed in entirely different notation.






Introduction

Econometric modeling often involves some dynamics, in the form of lagged variables, or
differences over time, etc. Unfortunately economic theory may tell us what variables are
relevant, but is usually only marginally informative about their dynamics. This paper explores a
guideline for the specifications of the dynamics, derived from a very general principle: the
nature of time.

Very few economic processes run intermittently, with the annual or quarterly frequency of
empirical data series. Most proceed continuously from day to day. Production, consumption, and
investments are not done at January 1, or the first day in each quarter, but are spread over time.

This simple fact has been the subject of much research; both about the problems involved in
ignoring this fact, and about the estimation of continuous-time models. See for instance the
references in Ten Cate (1993) and in the more recent McCrorie and Chambers (2004). Here we
ask: can we use this research to find simple and practical recipes for the specification of dynamic
economic relations, in discrete time? This question is answered affirmative for the partial
adjustment model.

In the next section an intuitive example is given, showing the effect of continuous time
modeling on a dynamic equation in discrete time. Section 3 discusses details about continuous
time.

In sections 4 through 7 refinements of the partial adjustment model

Yi=pY-1+ 90X (1.1)
are derived from an assumed underlying continuous-time model, using two approaches:

In section 4 the continuous-time analysis of distributed lags of Sims (1971) is applied to the
partial adjustment model in the form of a distributed lag model.

In sections 5 through 7 the analysis of differential equations as initiated in Bergstrom (1966) is
applied to the partial adjustment model in the form of a difference equation.

It is shown that these two approaches are closely related.

Section 8 discusses the reverse problem: what underlying continuous-time model is implied
by the partial adjustment model (1.1) without these refinements?

Section 9 sums up the results. Mathematical derivations are put into three Appendices. In
Appendix B a relation between engineering mathematics and continuous-time econometrics is
used, which seems to have been overlooked in the literature.
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An intuitive example

As an example we consider the production capagitreated by investment in equipmefat
For simplicity, the investments are assumed to be immediately usable for production, without
gestation lag.

Then the model equation for the production capacity should take into account only one half
of the investment figure of the current time period. Why? With all current period investment in
the equation, the production capacity would represent the stock of capital accumulatedrat the
of the period. On the other hand, a zero coefficient for current period investment would represent
the stock of capital at thieeginningof the period. Otherwise stated: since on the average the
current period has elapsed for one half, the investment during the current period must be taken
into account for one half.

This can be written as:

1/1
Yt—(xt+>(t1+xt2+~') (2.1)
K\ 2

with capital coefficienk and (net) investments. Thus the lag distribution of the investments

in the equation for production capacity has a peculiar shape at the near end, due to the
assumption that (macro) investments flow continually throughout the time period. Several
macro-economic models of the CPB have an equation for production capacity in this form. This
example will recur repeatedly in the formal analysis below.

Individual investment projects are usually not evenly distributed within the discrete time
periods of the data series. If it were known that such projects are usually late/early within the
time periods, then the above coefficient of one half should be somewhat smaller/larger. In the
absence of such knowledge, however, the above equation is the most likely.

In the sequel we shall discuss in detail what time pattern of the investments is required for
(2.1) to hold exactly; as we shall see at the end of section 4 below, it is not necessary that the
investments are constant within the discrete time periods.

The approaches discussed below are based on various assumptions about the time pattern of
the exogenous variabd. These assumptions may or may not be very realistivever,
ignoring the discussion in this paper altogether also implies some assumption about this pattern,
which might be entirely unrealisti¢zor example, to base the production capacity in (2.1) on the
summation ofll investments implies that investments are indeed always done at January 1, or
—in a quarterly model- at the first day in each quarter. Barring this, there must be some odd
relation between the two underlying continuous-time seri@sdx, other than g/dt = x/«;
more about this in section 8 below.

11
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Continuous time

Let us assume that the data generating process runs in continuotisithecontinuous-time
seriesy(t) andx(t). Without loss of generality the length of the discrete time period is unity.
Assuming the variables are flows, observed discrete-time serieslX; are defined for integer

as
t+1
Y = y(z)dz (3.2)
t
and
t+1
X = / x(7)dz 3.2)
Jt

respectively. We shall also use the moving sum

=(t) = /t (e 3.3)

defined for reat. For integett we have=(t) = X.

In continuous-time econometrics much effort has been put into the mathematics of the error
term and of continuous-time stochastics in general. However, throughout this paper any error
term is ignored: the systematic part of the model equations is enough to make our point. Notice
that in the discussion in the previous section, no error term is involved.

The time pattern of the exogenous variable in continuous time is relevant here, as is clear
from the discussion at the end of the previous section.

Finally notice that ify; were the capital stock, dated, say, at the beginning of the time
periods, we would simply havg = y(t) instead of definition (3.1). Then the term with one half
in equation (2.1) must be removed. However, in this paper only relations between flows are
studied. These relations might be any kind of behavioral relation; not only book-keeping

relations such as equation (2.1).

1 Alternatively, one might assume a data generating process in discrete time, with a higher frequency than the observed
data. See e.g. (Maddala, 1977, pp. 374-376) and the references cited there. This give roughly the same result as we will
find in this paper: estimate a “geometrically declining lag distribution leaving the first coefficient free”.

13
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Sims’ distributed lags

The basic reference equation of this paper is the partial adjustment model (1.1). The speed of
adjustment to a change X is determined by. Stability requires-1 < p < 1. Special attention
will be paid to the limiting case — 1.

The inclusion of the exogenotg is essential here. Otherwise we would have a “pure” time
series model, such as Chambers (1999) and Teles and Wei (2000), and most of the modern
continuous-time finance models.

An alternative representation of equation (1.1), with an exponentially distributed lag, is as

follows:
Y=0 3 P%i (4.1)
K=0

The relation between equations (1.1) and (4.1) is known in econometrics as the Koyck transform;
see Koyck (1954). In this paper we will repeatedly switch between these two equivalent forms.

In Sims (1971) distributed lags are discussed. As in the intuitive investment example above,
Sims assumed that the actual process takes place in continuous time. Since in practice one works
with discrete-time data, he proposed several discrete-time approximations to the underlying
continuous-time distributed lag. The coefficients of these discrete-time approximations are a
moving average over the assumed underlying continuous lag distriBution

In this case we assume of course that the underlying continuous-time lag distribution is

exponential:

YO =00 [ pox(t-s)ds 4.2)

with somegc. The relation betweey(t) andY; (and between(t) andX;) was discussed in
section 3 above. Sincgis not restricted to integerp, must be positive, resulting inQ p < 1.

In our Appendix A, one of Sims’ discrete-time approximations is applied to continuous-time
lag distribution (4.2), and it is shown that indeed this produces an exponential discrete-time lag
distribution, with exponeng. This result is transformed back to the autoregressive form, giving:

Ye=pYe1+ (X +rXe1) (4.3)
with
_ 1—p+plogp
r= 7p ~1-logp (4.4)

and with¢ proportionat to gc.

2 In Ten Cate (1993) this is applied to polynomial lag distributions (Almon lag distributions).

3 Note that the relation between ¢ and ¢ is not relevant here, since our purpose is to find a good discrete-time model,
and not to express a discrete-time model in terms of continuous-time parameters. Also, in the discrete-time equations in
this paper the parameters ¢ and p are not labeled to distinguish between their different continuous-time origin.

15



Hence it is better to use equation (4.3) instead of the naive equation (1.1) if one assumes that the
actual process takes place in continuous time. Note that in addition to the M4gtjeelproposed
equation (4.3) also has a laggdin the equation. This does not increase the number of
parameters, however, sincés a known function op.

With 0 < p <1 we have < r < 1. More specifically, for smajp we have a small, and for
largep we have:

imr=1 (4.5)
p—1

Hence forp — 1:

Yo =Y-1+ 0 (X +X-1) (4.6)

Integrated over time:

1
Y =2¢ (th +Xt1+Xt2+---) 4.7)

This is the form of the relation between production capacity and investment in equation (2.1),
with 1/x = 2¢.

As discussed in Ten Cate (1993), equation (4.3) above, and hence also equations (4.6) and
(4.7), are exact iE(t), defined in (3.3), is piece-wise linear, i.e. linear within the discrete time
periods. This amounts to the original sengs) having an arbitrary additive seasonal pattern;

this is slightly more general thax(t) being constant within the time peridds

4 This might seem to contradict the intuition developed in section 2 above, with the investment example: doesn'’t it matter
whether this seasonal pattern has its highest value early or late within the period? Note that early investments contribute
more to the production capacity than late investments. To solve this puzzle, assume that this seasonal pattern consists of
the investment of one machine every year, at the same date in each year. Now let us shift this date backwards in time —
say one month. Then indeed in every year the production capacity Y; increases with one month’s production capacity of
this machine. However, this has no effect on the difference Y; — Y;_1, and hence it leaves equation (4.6) unchanged. Of
course equation (4.3) is more complicated; here is no effect on Y; — pY;_1.

16



Bergstrom’s approximate analog

In this section and the next two sections, we start from the partial adjustment equation (1.1),

written as a difference equation:
AY; = 0% —(1—p)Yr-1 (5.1)

with the differenced defined byAY; = Y; — Y;_1. One might assume then that the data are
actually generated in continuous time by a differential equation:

O _ poxt) -7yt 62)

with y > 0. With

y = —logp (5.3)

the differential equation (5.2) is equivalent with the continuous-time distributed lag equation
(4.2); they are related by the continuous-time Koyck transformation

Bergstrom (1966) studied difference equations as discrete-time analogs of differential
equations. This has resulted in a lot of follow-up research; see for instance the review in
Bergstrom (1993).

Bergstrom’s approximate discrete-time analog of equation (5.2) is defined by replacing the

differential by the difference and the levels by averages over time:

+ X Y+ Y-
AYt:(bCX{ 2Xt 1 X 2t1 (5.4)
or, with the left-hand side written as in our basic partial adjustment equation (1.1):
Yo =paYi1+ ¢ (X +X-1) (5.5)
with ¢ proportional tog. and with thep, (where thea indicates ‘approximate’):
2—
pa=o" (5.6)

- 24y
which is smaller thap = exp(—v) as in (5.3) above. This is especially relevant in the
continuous-time literature, where the purpose is to translate an estimateack to the
underlying continuous-time parametét. However, for the present analysis it matters only that

5 See for instance (Wymer, 1993, p.39, note 1). In engineering language it is said that the system (5.2) is described by the
distributed lag equation (4.2) using the convolution of the impulse response function h(t) = p' with the input x(t); see for
instance Oppenheim and Willsky (1983), equation (3.54) at p.98, or Sinha (1991), equation (2.86) at p.74.

8 It has been overlooked in the econometrical continuous-time literature that y > 2 is equivalent to a negative p, in (5.6)
and hence an oscillating Y; in (5.5), which is incompatible with an assumed underlying first-order continuous-time system.
Hence the estimated mean lag 1/y in model (5.2) can not be smaller than one half of the unit time period. In other words,
this is not applicable to ‘fast’ models — or seemingly fast models, in fact. This limitation holds also for higher-order models.
See Ten Cate (2002), where it is also shown that this method is the same as the Tustin transformation, or Bilinear
transformation, in engineering.
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there is no assumption about the time patterr(bf, or =(t), for which there is an equation of
the form of (5.5) with arbitrary that holds exactly if the underlying continuous-time model is
equation (5.2), sincgy # p for anyy > 0. Hence its name: the approximate analog.

In summary: as in the previous section, taking account of the continuous-time nature of the
underlying process introduces a term with the laggei the right-hand side of (5.5). Compare
with the result (4.3) in the previous section: lagged and unlaggetivays have the same
coefficient here.

18



Bergstrom’s exact quadratic analog

Bergstrom’s exact discrete-time analog of equation (5.2) is derived from solvirygtioover

time, starting from, say(0), and computing the discrete-tinvefrom this solution. The
continuous-time serieg(t) does not appear in the result. This is achieved by using an
assumption about its time pattern: a quadratic function of time. Appendix C shows this for a
slightly different case, discussed in the next section. Here we have:

Y= pY149 (xt FoXeat :zxm) (6.1)
with

fo= (—73+;y2>p+73— 27*2+7*1 (6.2)

r= (2y3 — yl) p—2y3+2y 2 (6.3)

rp= (—7‘3 - ;y‘2> p+y - %y‘z (6.4)

and withy defined according to (5.3) and withproportional tog.. See for instance (Wymer,
1993, p. 49).

With flows this is exact in the sense thaEift), defined in (3.3), is quadratic then (6.1)
satisfies the differential equation (5.2) exactly. (With stocks, the sefi¢étself must be
guadratic.) Since the series must be quadratic over each pair of adjacent time periods, it must be
guadratic over thentiretime range, thus excluding business cycles.

With y — 0 we havep — 1, the case discussed several times above, related to the intuitive
example in section 2. Using the third order approximagica exp(—y) ~1—vy +7y%/2—y3/6

it is easily shown that equation (6.1) becomes in this case:

8 1
AYr=¢ (Xt + gxt—l - 5X{—2> (6.5)
Integrated over time we have:
12 /5 13
t = E(P <12Xt+12Xt1+Xt2+Xt3+"'> (6.6)

This differs slightly from Sims’ result in equation (4.7) above.

19
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Bergstrom’s exact linear analog

Although traditionally Bergstrom’s exact analog is used with a quadratic assumption as in the
previous section, it can also be used with a linear assumptiork (Lgbe piecewise linear, as
with Sims’ approach, discussed in section 4 above. In Appendix C it is shown that then equation

(6.1) simplifies to

r*
Yi=pYi_1+¢ (xt + rixtl) (7.1)
0
with
rg=y 2p—v 2+y?t (7.2)
ri=—(r2+y)p+r? (7.3)
o =rddc (7.4)

It is easily seen that this can be written as Sims’ equations (4.3) and (4.4) above:

M-y Ne+r?  —(ty)p+l_ 1-ptplogp 7.5)

ré Y 2p—y 24yt p—1+y p—1-logp

using relation (5.3). This should not come as a surprise, since the two methods are based on

equivalent models and they require the same time pattegftoto be exact.
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The inverse approximate analog

As a step aside from the main theme of this paper, it might be interesting to see what
continuous-time model is implied if the extra term wkh 1 in the various difference equations
above is not included.

For this purpose the inverse of Bergstrom’s approximate analog is derived in Appendix B,
using the engineering literature. This inverse analog is found by replacing the discrete-time lag
operator by the continuous-time operator@/dt)/(2+d/dt). This is applied to the “naive”

discrete-time model equation (5.1), or (1.1), showing that this model implies at the continuous

time level:
dy?(t) = gox(t) =7y (t) + %%d%(t) ®1)

This differs from the continuous-time model (5.2) by the term witkii/dt. Here the
adjustment to a shock ix(t) is no longer the exponential path definedjbyin fact the very
notion of a shock irx(t) is a problem here, since at the moment of the shock the derivative
dx(t)/dt does not exists.
Substitutingy = 0 and¢. = 1/ into equation (8.1) gives us the “odd” relation mentioned at

the end of section 2:

dyT(t) - % (X(t) + ;Ob;t(t)> 8.2)

Here the production capacity increases not only with investment, but also with the increase of
investment! It is easily seen that Bergstrom’s approximate analog of this equation is indeed the

naive
1
AY = =X (8.3)
K
without X;_1, or
1
Yt:;(xt-i-xt—l“rxt—Z‘f'“') (8.4)

without the one half which occurs in equation (2.1).
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Conclusion

Most economic processes run more or less continuously in time, from day to day, and not with
the frequency of the empirical data such as yearly or quarterly or monthly. The proposition of
this paper is that nevertheless modeling in the low frequency of the data makes sense, if the
proper dynamic specification is chosen. First, this has been discussed using a simple intuitive
example. Next, the continuous-time econometric literature has been used to demonstrate this
more formally. It has been shown that the continuous-time models of Sims and Bergstrom are
closely related. The inverse of Bergstrom’s approximate analog has been introduced and used.
The result is a simple suggestion: a partial adjustment model such as (1.1) might be refined
by adding a term witt;_; to the right-hand side. The specific form of this term varies with the

approach chosen, as follows.

Bergstrom’s approximate discrete-time analog implies that this term is simply equal to

PXe 1 (9.1)

whereg is the coefficient of the unlaggefl. See equation (5.5) above.

Based on Sims’ work, it is suggested to multiply (9.1) with a specific functign &ee equation
(4.3) above. Fop — 1 this function tends to unity, reducing the term to (9.1). See equation (4.6)
above.

The linear form of Bergstrom’s exact discrete-time analog gives the same result. See equation
(7.1) above.

Bergstrom'’s standard quadratic exact discrete-time analog also suggests such a function. This
function tends to 1.6 fop — 1. Also a term withX;_» is included here. See equation (6.5) above.

Apart from empirical evidence of course, | tend to prefer the first two methods, which can

reproduce the intuitive example in section 2. The third method cannot do this.
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Appendix A The equations (4.3) and (4.4)
A.1 Sims’ approach

In this section we summarize Sims’ approach, following Sims (1971). Consider the following
distributed-lag equation, with lag operator L defined Byd= X_:

Y = mbLk Al
t (k;k )Xt (A1)

In the case of a finite length lag distribution, we h&ve= 0 beyond the lag length.
The general form of the underlying continuous-time distributed lag model is:

y© = [ Bext-s)ds (A.2)

In general it is not possible to obtain the discrete-time lag equation (A.1) by substituting the
continuous-time lag equation (A.2) into definition (3.1): one does not get rid of the
continuous-time(t). Sims (1971) suggested several methods to solve this problem based on
assumptions aboutt). One of these methods, based on (Sims, 1971, Proposition A) gives the
coefficientshy in (A.1) as a weighted moving average oyer

by :/711(1—|s\),13(k+s)ds

0 1
:/ (1+s)/3(k+s)ds+/ (1—s)B(k+s)ds (A.3)
-1 0

fork =1,2,3,... The weighting function has the form of a ‘tent’: the functior 1s| with
—1 < s< 1. This local weighting smoothes any sharp peak in the continuous-time lag
distribution. In a sense, observing in discrete time is like being unable to see sharp outlines
while looking through fog.

Itis assumed thai (s) vanishes for negative as indeed in equation (A.2). This is
equivalent toy being dependent only on the past and presert ahd not on the future of.
Then fork = 0 we have:

1
bo :/ (1—s)B(s)ds (A.4)
0
Thus,bg misses the left half of the tent, duefds) being zero for negative. Notice that if8 is
constant at the near end, thighis one half ofby, as in the intuitive example in section 2.
See the end of section 4 above for a discussion of the cases in which this approach is exact.
A.2 Sims’ approach applied to the exponential lag distribution
Let the continuous-time lag distribution be as in model (4.2):

B(S) = ocp® (A.5)

27



The approximate discrete-time lag distribution based on Sims (1971) is found by substituting
(A.5) into equation (A.3). Thenfdt =1,2,3,... we have:

0 1
by = ¢c/ (1+s)p**Sds+ q)c/ (1—s)pk*sds
-1 0

0
_ % {(14_5_ 1 )pk+s}
Iogp Iogp s=-1
1
n dc [(1—3—1— 1 >pk+s}
|ng |ng s=0
_ f <(1_1>pk+1 k-1
logp logp logp
S Y TR I
logp logp

oo
= — _l’_i
toge?” \" "

_ apk (A.6)

with

_ % o1
a= (Iogp)2 (p 2—|—p> (A.7)

Hence the approximate discrete-time lag distribution is indeed exponential as well, with the

same decay rate paramegeas in the assumed underlying continuous-time lag distribution.
In order to find the current period coefficidnt, assumption (A.5) is also substituted into
equation (A.4):

1
by = ¢c/o (1—-s)p>ds

1
)]
logp logp s=0

= gc(p —1—logp) / (logp)? (A.8)

Thus at the discrete-time level we have the exponential lag distribbgienap; however
with the current period coefficiett not equal taa. The factory/a is a monotonously
increasing function op. With 0 < p < 1 we have (< bg/a < % More precisely:

bo 1

pILnlgo 2 (A.9)
Here the lag distributio is near constant and the current-period fattpia is near one half.
Compare with the investment example of section 2, where it is one half.

For smallerp (faster rate of decay) the current-period fadigfa is even smaller. To give a

specific example: ip = 0.5 thenbg/a = 0.39; in that case the lag distribution is not equal to
105 025 0125--- (A.10)
but equal to

0.39 05 025 0125 .- (A.11)
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The sharp peak at the near end of the lag distribution is indeed smoothed as noted after equation
(A.3) above. If (A.11) is normalized to add up to unity then it resembles quite closely Fig. 6.6b
in (Hendry, 1995, p. 217)); with = 0.55 the two distributions are very cldse

The results (A.6) through (A.8) can be transformed back to the autoregressive form, with the
laggedy;, as follows. The equations for the coefficients in (A.6) and (A.8) are substituted into
the lag distribution of (A.1):

Y, = oobL" X
(o)

= <bo+a § pkLk> X
k=1

_ apl
= (bo+ 1PL) Xt (A.12)
Hence:
(1-pL)Y = (bo(1—pL)+apl)X
= (bo+ (a—hbo) pL) X%
= (1+rL)boX
= (14rL)¢X (A.13)
with:
_ (@a—bo)p _ 1—p+plogp
e (A.14)
and
¢ =bo=gc(p —1—logp) /(logp)? (A.15)

7 | got the idea to write this paper when | saw this lag distribution in Hendry's book.
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Appendix B The equation (8.1)

In order to derive equation (8.1), the inverse of Bergstrom’s approximate analog is introduced,
for the linear case. As discussed in section 5 above, Bergstrom’s analog is obtained by replacing,
for an arbitrary serieg(t), the differential quotienty(t) /dt by the differenc@\y; = Y; — Y;_1,
and the level/(t) by the mear(Y; +Y;_1) /2. It is assumed without loss of generality that the
discrete time unit is of length one.

For linear models, these two operations can be combined by replacing the differential

quotient by the difference divided by the mean:

D= A (B.1)
5(1+1L)
or
1-L

where D is the differential operatord and as before the lag operator L is defined by
LY: =Y,_1. Itis easily verified that in this way differential equation (5.2) is indeed transformed
into equation (5.5). (Notice that in this way also Bergstrom’s approximate analog of higher order
equations can be found without first decomposing them into first order equations.)

In the engineering literature of dynamic systems this transformation is called the Bilinear

Transformation or the Tustin transformation, and written as:
S=2—— (B.3)

wheres andz are the Laplace transform variable and the z-transform variable respectively. In
the context of linear models,coincides with D and ! coincides with L. See Ten Cate (2002),
where the hitherto overlooked relation between continuous-time econometrics and engineering
mathematics is discussed. See also for instance Sinha and Rao (1991) for a discussion of the
relation between continuous and discrete time models in engineering language.

The inverse of (B.2) is:

2-D

L — o (B.4)
Note that this is of the same form as relation (5.6). As shown in Ten Cate (2002), this holds
more in general: the relation between the two operators is the same as the relation between the
roots of the characteristic equations.

Equation (B.4) is applied to difference equation (5.1), or its equivalent (1.1), giving:

(1—p§;g) y(t) = ox(1 (B.5)

This can be rewritten as follows, proving equation (8.1):

1

Dy(t) = [

(—2(1—p)y(t) +2¢x(t) + ¢Dx(t))
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=—yy(t)+ ﬁ (29x(t) +¢Dx(t))

= —yy(t) + gex(t) + %%DX(t)

using (5.6) and defining:

2

¢c=71+p

¢
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Appendix C The equations (7.1) — (7.4)

To make this paper more self contained, the derivation is given of the linear form of Bergstrom’s
exact analog. The solution of differential equation (5.2) satisfies for alkreal

-1
y(r)=e7y(r—=1)+ / e "*gcx(7 —s)ds
JO
1
:Py(f—1)+¢c/0 p°x(7 —s)ds (C.1)
Integration ovet < 7 <t + 1 for integert gives:

t+1 1
\4 :th_1+¢c/ / p°x(t —s)dsdr
Jt Jo
=pYr-1+ ¢t (€.2)

with

t+1 ,1
ztz/ /pSX(T—S)der
t JO

:/()1p5/tt+lx(f_s)dfds
1
- /0 pS=(t—s)ds (C.3)

whereZ= is defined in (3.3). Assuming is piecewise linear we have for integeand 0< s < 1:

S(t—s)=Z(t)+s(E(t—-1)—=(1))
=X+s(X-1—%) (C.4)

Then
1
zt=/o S (X +S(X1—X))ds
1 1
:Xt/O ps(lfs)dSJrXt—l/o p°sds
=roX +riX%-1 (C.5)
with:
1
réz/ p°(1—s)ds
0
_ _ _ 1
=[(=r sy 7)o,
=y 2p—y 24yt (C.6)
and
1
r{z/ p°sds
0
_ _ 1
=[-(r?+sr)p%l
=—(r?+rH)p+r? (C.7)
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Then

(1—pL)Wt = ¢cZ
= gc(ro +r1L)X
= o1+ L)% (c8)
0
with

As in the other Appendices, use has been made of the lag operator L definéd byY, .
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