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Arithmetic and geometric mean rates of return in discrete time

This memorandum presents some basic equalities and inequalities about rates of return in

discrete time, without auto-correlation. The arithmetic and geometric means are discussed.

Estimation of the expected payout and the median payout is discussed, including maximum

likelihood estimation.
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1 Introduction

This memorandum1 presents some basic equalities and inequalities about rates of return in

discrete time, without auto-correlation.

Modelling stochastic rates of return in discrete time might be simpler than using the concept

of continuous time Brownian motion. On the other hand, many results below are only

1 The author thanks Pascal Janssen (PGGM) and Gijsbert Zwart and Ed Westerhout (CPB) for their help.
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approximations, using assumptions such as the one-period return and variance being both much

smaller than one. In both approaches numerical results must be computed with small time steps.

First a general model is discussed, requiring only an expected return which is constant over

time. Starting in section 4, the case of lognormally distributed returns is discussed, including

maximum likelihood estimation and the median payout.

Although most if not all results are not new, this overview might be useful. Your author

would have saved time if it were available when he needed it. Comments are invited.

2 The general model

Let St be the value of stocks at timet, with:

St = (1+ rt)St−1 (2.1)

for all t = 1, . . . ,T. Let S0 be a given positive number. Thert are stochastic; they are

independently distributed. The form of the distribution is not specified. Assuming limited

liability implies for all t:

Pr(rt <−1) = 0 (2.2)

TheSt are independent of the previous seriesSt−1, . . . ,S1. Also, thert have the same

expectation E[rt ], denoted bym:

E[rt ] = m (2.3)

for all t. Since thert and theSt−1 are independently distributed, we have for someT:

E[ST ] = E[(1+ rT)ST−1] = E[1+ rT ]E[ST−1] = (1+m)E[ST−1] (2.4)

Repeating this all the way down toS0 gives:

E[ST ] = (1+m)TS0 (2.5)

or

(E[ST/S0])
1/T −1 = m (2.6)

The arithmetic mean is

m̂A ≡
1
T ∑

t
rt =

1
T ∑

t

(
St

St−1
−1

)
(2.7)

Of course this is an unbiased estimator ofm, due to equation (2.3) above:

E[m̂A ] = m (2.8)
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See section 7 below for the maximum likelihood estimation ofm under the assumption of

lognormal returns.

Let 1+ m̂G be the geometric mean of the 1+ rt :

1+ m̂G≡
(

∏
t

1+ rt

)1/T

=
(

ST

S0

)1/T

(2.9)

HenceST/S0 is equal to one plus the geometric mean, to the powerT. However, its expected

value is equal to one plus the expected value of thearithmeticmean, to the powerT.

A geometric mean of non-negative numbers is smaller than (or equal to) the arithmetic mean.

(For example, withrt =±1/2 the arithmetic mean of 1+ rt is 1 and the geometric mean is
√

0.75= 0.87.) Hence we havêmG≤ m̂A for every realization of the series 1+ rt , and hence,

with (2.8):

E[m̂G] < m (2.10)

Nonzero variance of thert is assumed here, giving strict inequality in (2.10).

3 Example

There are several small numerical examples in the literature which illustrate the previous section.

For instance the well-written Exhibit 10.6 in the section “Geometric versus arithmetic average”

of McKinsey & Company et al. (2000).

A very simple example is the case ofT = 2 with rt =±1/2, like the example before equation

(2.10). With equal probabilities this givesm= 0. With S0 = 1, the four possible values ofST are

0.25, 0.75 (twice) and 2.25. They have equal probability and hence E[ST ] = 1, which agrees

with equation (2.5) above.

The geometric mean return̂mG, defined in equation (2.9) above, can take on the four values
√

0.25−1,
√

0.75−1 (twice) and
√

2.25−1, giving E[m̂G] =−0.07 which is smaller than

m= 0. This agrees with equation (2.10) above.

Note that after one high and one lowrt (in either order) we get a
√

S2/S0 equal to the

geometric mean computed in the example before equation (2.10), smaller than 1+m. This is

because the other two possibilities are omitted: twice high and twice low.

4 The lognormal model

Additionally to the assumptions in section 2, it is assumed that allrt are identically distributed.

Moreover, let the distribution of the 1+ rt be lognormal:

log(1+ rt) ∼ N
(

µ ,σ
2) (4.1)
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for all t. The limited-liability restriction (2.2) above now becomes Pr(rt ≤−1) = 0.

Also:

log(ST/S0) ∼ N
(
Tµ ,Tσ

2) (4.2)

log(1+ m̂G) ∼ N

(
µ ,

1
T

σ
2
)

(4.3)

It follows from the formulas for the expectation and variance of a lognormal variable that:

E[1+ rt ] = exp

(
µ +

1
2

σ
2
)

(4.4)

E[1+ m̂G] = exp

(
µ +

1
2T

σ
2
)

(4.5)

Var[rt ] = (1+m)2(
exp

(
σ

2)−1
)
≈ (1+m)2

σ
2≈ σ

2 (4.6)

where the two≈ signs are associated with smallσ
2 and smallm, respectively.

5 The expected geometric mean return

An approximation of the difference between the two sides of inequality (2.10) is derived, with

lognormal 1+ rt . With (4.5) above, we have

E[1+ m̂G] = exp

(
µ +

1
2T

σ
2
)

= exp

(
µ +

1
2

σ
2− 1

2
σ

2 +
1

2T
σ

2
)

= (1+m)exp

(
−1

2
σ

2 +
1

2T
σ

2
)

(5.1)

Hence with largeT we have:

E[1+ m̂G]
1+m

≈ exp

(
−1

2
σ

2
)

< 1 (5.2)

Then we have also:

E[m̂G] ≈ (1+m)exp

(
−1

2
σ

2
)
−1

≈ (1+m)
(

1− 1
2

σ
2
)
−1 = m− 1

2
σ

2−m
1
2

σ
2

≈ m− 1
2

σ
2

= E[m̂A ]− 1
2

σ
2 (5.3)

where the last two≈ signs are associated with smallσ
2 and smallm, respectively. Compare with

(2.10).
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6 The arithmetic and geometric returns

The result of the previous section suggest the following two concepts, used in communication

between practitioners:

arithmetic rate of return≡m (6.1)

geometric rate of return≡m− 1
2

Var[rt ]≈m− 1
2

σ
2 (6.2)

Equations (4.6) and (5.3) are used for (6.2).

7 Maximum likelihood estimation of m and E[ST ]

In section 2 above, the unbiased estimation ofm= E[rt ] was discussed. The maximum

likelihood estimate of the same is, using equation (4.4) above:

m̂ML = exp

(
µ̂ +

1
2

σ̂
2
)
−1 (7.1)

whereµ̂ andσ̂ are the maximum likelihood estimate ofµ andσ , respectively. These are the

sample mean and standard deviation of the normally distributed log(1+ rt), respectively. (See

any econometrics or statistics textbook.) Then, with equation (2.9) above, we have:

µ̂ = log(1+ m̂G) (7.2)

and hence with equation (7.1):

1+ m̂G

1+ m̂ML
=

exp(µ̂)
exp

(
µ̂ + 1

2σ̂ 2
) = exp

(
−1

2
σ̂

2
)

< 1 (7.3)

Compare with equation (5.2) above. For largeT the standard error of̂σ 2 goes to zero and we

haveσ̂
2≈ σ

2; compare Campbell et al. (1997), equation (9.3.31)2.

The maximum likelihood estimate of E[ST ] is (1+ m̂ML )TS0, using (2.5). In practice of

course thêmML is computed over a historical time range beforet = 0.

8 The median

The median of a variable is equal to the exp of the median of the log, since both functions are

monotonous. With lognormal 1+ rt , log(1+ m̂G) is normally distributed; see (4.3) above. Hence

2 Our T is the n of Campbell et al. (1997) and our rt is their Rt . We follow them in making no distinction between σ̂
2 and

σ̂ 2, because the two are the same, of course. The σ above their equation (9.3.26) must be σ
2.
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the median of log(1+ m̂G) is equal to its expectation. Then

Median
[
ST/S0

]
= exp

(
Median[log(ST/S0)]

)
= exp

(
Median

[
∑
t

log(1+ rt)
])

= exp
(
Median[T log(1+ m̂G)]

)
= exp

(
T Median[log(1+ m̂G)]

)
= exp

(
T E[log(1+ m̂G)]

)
= exp

(
Tµ

)
(8.1)

Then

Median
[
ST/S0

]
E

[
ST/S0

] =
exp

(
Tµ

)
exp

(
T

(
µ + 1

2σ 2
)) = ρ

T (8.2)

with

ρ ≡ exp

(
−1

2
σ

2
)

< 1 (8.3)

Also, with T � σ
2/µ we have, using (8.1) and (4.5):

Median
[
(ST/S0)

1/T
]

=
(
Median[ST/S0]

)1/T
= exp(µ)≈ E[1+ m̂G] (8.4)

9 When to consider geometric?

9.1 Unbiased estimation of E[ST ]

The conclusion below equation (2.9) might suggest the use of the arithmetic mean for the

estmation of the expected multi-period payout.

However, substituting the arithmetic mean for them in (2.5) gives a biased estimate of the

expected payout, due to the non-linearity of the power raising. Jacquier et al. (2003) find that

using a weighted average of the geometric and arithmetic means gives an unbiased estimate of

the expected multi-period payout.

The alternative is the maximum likelihood estimator of E[ST ], in section 7. (Note that at

Campbell et al. (1997), p.367, maximum likelihood estimation of option prices is the only

estimation method discussed, without bothering about finite sample bias.)

Finally, note that in simulations where parameter values are assumed, this discussion about

estimation is not relevant.

9.2 The median

One might be interested in the median payout rather than the expected payout. Focussing only

on a high value the latter may be “courting with ruin” (Samuelson, 1971) if the median payout
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tends to zero for largeT. As can be seen from equation (8.4), for the case of lognormal returns

this implies a negative expected geometric mean – or a negative geometric return, from (6.2).

This is also relevant in simulations where parameter values are assumed.

10 Summary of results

With lognormal returns we have:

arithmetic rate of return≡ E[rt ]≡m= E[m̂A ]≈ E[m̂ML ]≈
(
E

[
ST/S0

])1/T −1 (10.1)

and

geometric rate of return≡ m− 1
2

Var[rt ]≈m− 1
2

σ
2

≈ E[m̂G] = E
[(

ST/S0
)1/T

]
−1

≈
(
Median

[
ST/S0

])1/T −1

= Median
[(

ST/S0
)1/T

]
−1 (10.2)
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