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A closed-form expression for the optimal capacity of CHP

In this memorandum the optimal capacity of Combined Heat and Power (CHP) is derived, using

a simple model with an analytical solution. The solution is expressed as the fraction of the time

during which the heat demand exceeds the optimal CHP heat production capacity.
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1 Introduction

Combined Heat and Power (CHP) production can be very efficient, since CHP equipment might

have a higher efficiency than electricity from the grid1.

The economically optimal size of a CHP installation is a variant of the general problem of

optimal investment in production capacity with varying demand. On the one hand, the costly

capacity must not serve very short-lived demand peaks and operate below full capacity nearly all

of the time. On the other hand, the capacity must not be insufficient all the time. There is an

optimum between these two extremes.

A numerical example of the model solution is given, with computer code.

This problem has also been studied by Dobbs (1982), using a very detailed analytical model;

see our appendix B below. There are also many numerical optimization analyses, such as Lund

and Andersen (2005), Ren et al. (2008), Streckiene and Andersen (2008). Conti et al. (2007)

1 This memorandum was written as part of the EOS TREIN project (Transition Energy Infrastructure Netherlands), with

financial support of SenterNovem. Comments are welcome. The author thanks Floor van Nes and Rob Aalbers (both

CPB) for their comments on earlier versions.
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explore the interesting combination of CHP with heat pumps, with much attention to CO2

reduction.

2 The model

The heat demand is assumed to be fixed. Letf (h) be the density function of the heat demandh:

the heat demand (say, in Watt) is in the rangeh to h+dh during a fraction of the time given by

f (h)dh. Then the total time is∫ ∞

0
f (h)dh = 1 (2.1)

and∫ ∞

0
f (h)hdh (2.2)

is the average heat demand over time2. The cumulation of the densityf (h) is the inverse of the

heat demand duration curve.

The heat production capacity of the CHP installation isC. If (and only if) heat demandh

exceedsC then heat is produced with a conventional back-up installation.

Then the net financial benefitB of CHP, per unit of time, as a function ofC, is:

B(C) = b
∫ ∞

0
f (h)min(C,h)dh−kC

= b

(∫ C

0
f (h)hdh+C

∫ ∞

C
f (h)dh

)
−kC (2.3)

Theb is the operational revenue of CHP per unit of heat produced and per unit of time

(combined, say, per Joule). Thisb depends on the price of avoided electricity use from the grid

and the price of gas and the (technical) efficiency of the various processes. We assumeb

independent3 of capacityC.

Thek is the capital cost of the investment, per unit of time (the annuity) and per unit of heat

production capacity of the CHP. This includes interest payments and depreciation.

This formulation may apply to different settings. For instance with a First Best model for a

society as a whole, subsidies and taxes in the computation ofb might be treated different from

the computation for a private investor. Also, the demand might come from a single house, or

from an office block, etcetera.

2 If h = 0 during some non-zero fraction of the time then f (0) is not finite. Let f (0) be equal to a constant times the Dirac

delta: the derivative of a unit step. Then limε→0
∫

ε

0 f (h)dh > 0 and also limε→0
∫

ε

0 f (h)hdh = 0. This has no effect on the

results.

3 Alternatively, when CHP is installed in most homes and offices, then the price of electricity might drop during peak hours

of heat demand.
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3 The solution

The first-order condition for a maximum of the net benefitB is:

dB(C)
dC

= b

(
f (C)C +

∫ ∞

C
f (h)dh−C f(C)

)
−k = b

∫ ∞

C
f (h)dh−k = 0 (3.1)

Hence the optimal capacityC∗ satisfies the following equality between marginal revenue and

marginal cost of the investment4:

b
∫ ∞

h=C∗
f (h)dh = k (3.2)

Or:∫ ∞

h=C∗
f (h)dh = ρ (3.3)

with ρ being the ratio of capital costs over operational revenue:

ρ ≡ k/b (3.4)

This can also be written as a closed-form expression:

C∗ = F (ρ) (3.5)

where the functionF is the (downward sloping) heat demand duration curve, with

F−1(C)≡
∫ ∞

h=C
f (h)dh (3.6)

See figure 3.1 below.

It follows from equation (3.5) that the optimal capacity decreases whenρ increases; that is,

when the capital costk increases or the revenueb decreases, or both. Ifk > b then CHP is not

profitable.

4 Further details of the solution

The optimal capacityC∗ might be positive but smaller than the capacity of the minimal available

installation; for example with a single house. Then of course it is still optimal to install CHP if

the net benefitB in equation (2.3) is positive for this minimal available capacity.

4 Compare the two sides of equation (3.2) with the marginal revenue curve and the (horizontal) marginal cost curve in

Figure 4 of Ren et al. (2008). They use a storage tank (not included in the costs) and hence their marginal revenue

function is a “smoothed” version of their (transposed) heat demand duration curve; see our (3.6). (Heat demand data file

obtained by courtesy of the authors.)
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Figure 3.1 The density curve f (h) in eq. (3.3) and the duration curve F in eq. (3.5)

heat demand h

0

C*

density

ρ

heat demand h

0

C*

ρ
fraction of the time

The optimal net benefit is indeed maximal (not minimal), because the second-order

derivative is negative everywhere:

d2B(C)
dC2 =

d
dC

(
b

∫ ∞

C
f (h)dh−k

)
=−b f(C) < 0 (4.1)

The maximal net benefit is always positive for a positiveC∗: substitution of the first-order

condition (3.3) into the last member of (2.3) gives

Bmax = b
∫ C∗

h=0
f (h)hdh > 0 (4.2)

This is the operational revenue of the CHP (not counting capital costs) during off-peak hours.

(We define off-peak byh < C.)

The capital costs are equal to the operational revenue of the CHP during peak hours. This

becomes clear when equation (3.2) is multiplied byC∗.

Equation (3.2) is similar to the peak load model for optimal capacity of any capital intensive

production for a demand which varies over time, with perfect competition. The electricity

market is the prime example. See for instance Ten Cate and Lijesen (2004), section 4.5,

“Optimal investment in a nutshell”.

5 Formulas for b and k

Formulas for the constantsb andk in the solution of the model are straightforward. They are

used in the numerical example below. Forb, the revenue per unit of heat produced by CHP, we

have:

b = pe
ηe

ηheat
− pgas

(
1

ηheat
− 1

ηref

)
= pgas

[
1

ηref
− 1

ηheat

(
1− ηe

ηegrid

)]
(5.1)

The pe andpgasare the price (or unit costs) of electricity from the grid and the price (or unit

costs) of gas; both per unit of energy. (The same pricepe applies to both buying and selling

from/to the grid.) Theηheat, ηe andηref are the efficiency of heat output of CHP, electrical output
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of CHP, and (heat) output of the reference system, respectively. The “economic efficiency” of

the electricity from the grid (with respect to gas) is:

ηegrid≡
pgas

pe
(5.2)

This is related to the “spark spread”. We haveηe < ηegrid < ηgas< ηref.

Fork, the capital costs flow per unit of CHP heat production capacity, we have5:

k =
ηe

ηheat

Kr
1−exp(−rT )

(5.3)

TheK is the price of the CHP per unit of e-capacity. (Possibly corrected for the decrease of the

required auxiliary conventional heat production capacity, linearly related to the CHP production

capacity.) TheT is the CHP equipment life time. Ther is the discount rate. Note that

lim
T→∞

Kr
1−exp(−rT )

= Kr (5.4)

which leaves only interest. With l’Hôpital’s rule:

lim
r→0

Kr
1−exp(−rT )

=
K

T exp(−rT )

∣∣∣∣
r =0

=
K
T

(5.5)

which leaves only depreciation.

6 A numerical example

A numerical example of the model is given. A value ofρ = k/b is computed, which gives the

value at the horizontal axis of the duration curve, as shown in equation (3.5). See the

Octave/Matlab program in Appendix A.

The discount rater is set at 10% per year. This is well below the discount rate of 19%

implied by the cost-recovery period of 5 years over a life timeT of 15 years used in De Jong

et al. (2008). (See equation (5.3) above: solver /(1−exp(−15r )) = 1/5 for r .)

The (additional) investment costs of CHP is set atK = 1800 euro/kWe, not including a hot

water storage tank. Retail energy prices are used, taken from SenterNovem (2009).

The main result isρ = 24%; see the bottom line of figure A.2 in Appendix A. Hence the

optimal capacity is less than the heat demand during 24% of the time.

This result can be expressed as 88 days per year. Compare with the duration curve6 of figure

3.4 in De Jong et al. (2008), for a Dutch house. A low-end CHP installation of 1 kWe (or nearly

6 kW-heat) is equal to the height of that duration curve at 50 days. This suggests, that the

optimal capacity is smaller.

5 The exp(−rT ) is the continuous time version of the discrete time expression (1+ r )−T . Let r → 0 with fixed rT .

6 There must be some error in the computer programming here, since the duration curve is both downward and upward

sloping.
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Appendix A Computer program with results

Figure A.1 Computer program for Octave or Matlab

efficiency_chp_heat = 0.75

efficiency_chp_electr = 0.15

efficiency_reference = 0.90

price_chp_euro_per_kW_electr = 1800

caloric_content_gas_MJ_per_m3 = 31.7

life_time_chp_years = 15

discount_rate_per_year = 0.10

cost_electr_grid_euro_per_kWh = 0.20

cost_gas_euro_per_m3 = 0.70

disp(" Results:");

capital_costs_euro_per_kW_heat_and_per_year = ...

(efficiency_chp_electr / efficiency_chp_heat) ...

* price_chp_euro_per_kW_electr ...

* discount_rate_per_year ...

/ (1-exp(-discount_rate_per_year * life_time_chp_years))

cost_gas_euro_per_kWh = ...

cost_gas_euro_per_m3 * 3.6 / caloric_content_gas_MJ_per_m3

value_electr = cost_electr_grid_euro_per_kWh ...

* (efficiency_chp_electr / efficiency_chp_heat)

value_extra_gas = cost_gas_euro_per_kWh ...

* (1/efficiency_chp_heat - 1/efficiency_reference)

revenue_euro_per_kWh_heat = value_electr - value_extra_gas

horizontal_axis_duration_curve = ...

(capital_costs_euro_per_kW_heat_and_per_year / (24 * 365)) ...

/ revenue_euro_per_kWh_heat

Figure A.2 Results of the computer program

capital_costs_euro_per_kW_heat_and_per_year = 46.340

cost_gas_euro_per_kWh = 0.079495

value_electr = 0.040000

value_extra_gas = 0.017666

revenue_euro_per_kWh_heat = 0.022334

horizontal_axis_duration_curve = 0.23685
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Appendix B Comparison with Dobbs, 1982

Dobbs (1982) presents an analytic model of optimal CHP. His model is much more general than

our model above. It includes a market for heat and a market for electricity, with a time-varying

demand function. The model has 3+8n free variables, including 5n Lagrange multipliers, where

n is the number of discrete time periods with fixed given duration. (Our model above has only

one free variable, namelyC.) Nothing changes during a time period. Because of the complexity

of his model, Dobbs studies the result for two periods.

Dobbs’ net benefit functionW, in his equation (10), contains three terms likekC in our (2.3)

above. These are related to three production capacity variables, namely for CHP electricity

production, CHP heat production, and conventional heat production, respectively. The first two

terms can easily be combined using Dobbs’ assumptions about constant efficiencies of the two

CHP production processes. (See also the bottom of the right-hand column of Dobbs’ page 278.)

The last term can also be combined with the others (apart from a constant), assuming a decrease

of the required conventional heat production capacity which is linearly related to the CHP

production capacity.

Using Dobbs’ alternative assumption of a fixed electricity price, the first term of his net

benefit function becomes simply the value of the produced electricity. See his page 281, first

sentence of the left-hand column.

Finally, with our assumption of a given demand for heat which must be satisfied, the second

term in Dobbs’ net benefit function becomes a constant and can be omitted.

Then Dobbs’ net benefit functionW is as follows, withti being the length of time periodi;

theHi andEi andFi are respectively the total heat produced, the electricity produced and the

total fuel consumed during time periodi. Using his (10) and (11) andEi/ηe = Hchp,i/ηheatas

discussed above, we get:

W =
n

∑
i=1

ti
(
peEi − pgasFi

)
−kC

=
n

∑
i=1

ti

(
peHchp,i

ηe

ηheat
− pgas

(
Hchp,i

ηheat
+

Hi −Hchp,i

ηref

))
−kC

=
n

∑
i=1

tiHchp,i

(
pe

ηe

ηheat
− pgas

(
1

ηheat
− 1

ηref

))
−kC+constant

= b
n

∑
i=1

tiHchp,i −kC+constant

= b
n

∑
i=1

ti min(C,Hi)−kC+constant (B.1)

Apart from the constant, this is essentially the same as ourB in (2.3) above.
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