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Abstract in English

Uncertainty is an inherent attribute of any forecast. In this paper, we investigate four sources of

uncertainty with CPB’s macroeconomic model SAFFIER: provisional data, exogenous variables,

model parameters and residuals of behavioural equations. We apply a Monte Carlo simulation

technique to calculate standard errors for the short-term and medium-term horizon for GDP and

eight other macroeconomic variables. The results demonstrate that the main contribution to the

total variance of a medium-term forecast, emanates from the uncertainty in the exogenous

variables. For the short-term forecast both exogenous variables and provisional data are most

relevant.

Key words: Monte Carlo simulation, Macro economic forecasting, Model uncertainty.

JEL code: C15, C53, E20, E27;

Abstract in Dutch

Voorspellen gaat gepaard met onzekerheid. In dit Discussion Paper onderzoeken we met het

macro-economische model SAFFIER vier bronnen van onzekerheid: voorlopige cijfers over het

verleden, exogenen, modelparameters en de residuen van gedragsvergelijkingen. Met behulp van

Monte Carlo simulaties berekenen we standaardfouten voor het BBP en acht andere

economische grootheden. Dit onderzoek wijst uit dat de onzekerheid ten aanzien van de

exogenen de grootste bijdrage levert aan de onzekerheid op middellange termijn. Voor de korte

termijn zijn vooral de exogenen en de voorlopige cijfers van belang.

Steekwoorden: Monte carlo simulatie, economische prognose, modelonzekerheid.
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1 Introduction

Uncertainty is an inherent attribute of any forecast. An essential auxiliary task of a forecasting

institute is therefore to provide insight into this uncertainty to its users. To this end, several data

can be provided. For instance, a forecaster can apply ex-post evaluations comparing forecasts

and realizations. Alternatively, a forecaster can present different scenarios describing future

outcomes. Furthermore, a forecaster can provide interval forecasts delineating a range of

outcomes which captures the future in a prescribed number of cases. The aforementioned

approaches quantify the forecast uncertainty. However, they are unable to identify the particular

components of a forecasting model that are responsible for a certain exponent of the uncertainty.

Important new insights into a model and its uncertainty can be gained by decomposing the

forecast error into components that can be associated with different sources of uncertainty.

Notably, the results of such an analysis can be used as a basis for prioritising model

improvements, as they provide weights to the different sources.

In this discussion paper, we use a standard Monte Carlo simulation technique for quantifying

model uncertainty which identifies the contribution of different sources of uncertainty to the

aggregated forecast error. We concentrate on macroeconomic forecasts conducted at the

Netherlands Bureau for Economic Policy Analysis (CPB) with the macroeconomic model

SAFFIER. Since late 2004, this model has served in most of CPB’s short-term and medium-term

analyses. Specifically, we focus on the decomposition of the total error variance of nine

important macroeconomic variables as predicted by SAFFIER.

We distinguish four sources of uncertainty in the macroeconomic forecasts. The first source

concerns initial model data uncertainty, i.e., uncertainty in provisional data obtained from

preliminary publications in the Dutch National Accounts (NA) provided by Statistics

Netherlands (CBS).1 In anticipation of the final data2, these provisional data are applied as initial

(lagged) data in CPB’s economic forecasts. The second source of uncertainty involves the

uncertainty associated with the forecasts of the exogenous data series. Their future realisations

are uncertain at the time of the model simulation. The third source of uncertainty pertains to the

model parameters in the behavioural equations which eminates directly from econometric

estimation of the behavioural model equations and expert adjustments. Finally, the uncertainty

associated with the error terms complements the set of sources. The error terms in the

behavioural equations correct for model misspecifications or random events.

The aforementioned four sources of uncertainty capture most but not all of the sources of

uncertainty associated with model-based macroeconomic forecasts. Clements and Hendry

(1998) and Ericsson (2001) categorize five sources of uncertainty of model-based forecast error.

1 The National Accounts represent the official statistical review of the Dutch economy.

2 We acknowledge that the word final has been chosen a bit unluckily as we exclude any incidental major revision from

our analysis.
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From their categorization, we omit model misspecification referring to the uncertainty associated

with model selection, viz. the particular choice of the endogenous and exogenous variables and

their functional form in the model equations. A second omitted source concerns expert opinion.

Model equations are sometimes adjusted to fit non-model information or anticipated future

events. This source of uncertainty will be analysed in a subsequent paper.

CPB has been one of the frontrunners when it comes to evaluating the quality of

macroeconomic forecasts by simulation. Already in 1991, results of a Monte Carlo analysis on

data uncertainties were published, see Gallo and Don (1991). Accompanying studies on

parameter uncertainties, exogenous variable uncertainties and error term uncertainties followed.

In 1994, a review article (Don (1994)) reported on the contributions to the forecast’s error

variance of the various sources of uncertainty. Monte Carlo simulations were performed with a

simplified macroeconomic model ZOEM. At that time, the main conclusions stated that

uncertainties in exogenous variables and the error terms in the behavioural equations were the

two dominant sources of forecast uncertainty for almost all endogenous variables. Preliminary

data uncertainty only played a prominent role in the one-year ahead business investment and

government surplus forecasts.

Several other institutes have published results on Monte Carlo simulations for assessing the

impact of uncertainty on their macroeconomic forecasts, although less elaborate than Don

(1994). The Bank of Canada, Amano et al. (2002), the Bank of England, Garratt et al. (2003),

and the Federal Planning Bureau, Van der Mensbrugghe et al. (1990), analysed parameter

uncertainty, the latter applying a simpler version of Monte Carlo simulation. Fair (1993)

considered parameter uncertainty and error term uncertainty in his US model. He used stochastic

simulation to estimate event probabilities, e.g. the probability of a recession. In Meyermans and

Van Brusselen (2006), the authors evaluated the uncertainty of the exogenous variables and the

error terms surrounding the 2006-2012 NIME forecasts. The most extensive analysis was found

in Kolsrud (1993a) and Kolsrud (1993b), who analysed three sources of uncertainty in the

KVARTS91 model of Statistics Norway and the Rimini 2.0 model of the Norge Bank. An

influential paper on the application of Monte Carlo simulation for sensitivity analysis and model

evaluation of macroeconomic forecasts is Canova (1995). In Fair (2003), Fair introduced the

Bootstrap method in stochastic simulation of uncertainty in macroeconomic models. This non

parametric stochastic simulation method proved particularly useful for analysing uncertainty in

macroeconomic models with rational expectations. A parametric method would require

assumptions on these expectations as well, while a non-parametric approach incorporates

already these assumptions by definition. Similar approaches were adopted in Onatski and

Williams (2003), Borbely and Meier (2003), Toedter (1992) and Kolsrud (2004). Onatski and

Williams addressed parameter uncertainty, Borbély and Meier focused on parameter uncertainty

and model selection, and Toedter and Kolsrud estimated the impact of parameter uncertainty and

error term uncertainty.
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Since 1994, the conditions surrounding Monte Carlo analyses have changed significantly. Since

the first Monte Carlo simulations at CPB, computer power has increased enormously.

Furthermore, more historical data on the various sources of uncertainty has become available,

and we can rely on more advanced econometric analysis techniques and software. These

developments enable us to apply the Monte Carlo simulations to the full operational quarterly

macroeconomic model SAFFIER, where Don (1994) applied a simplified version of the annual

CPB model used in those days. This allows us to apply ’real’ inputs for the quantification of the

uncertainty around the parameters and error-terms of the model.

SAFFIER does not incorporate rational expectations. Hence, bootstrapping has no particular

advantage over Monte Carlo simulation except for a preference for non parametric simulation

methods. In case of bootstrapping, however, unravelling the impact of the different sources of

uncertainty is more difficult, because the effects of these sources are not observed separately in

historic model realisations. historic outcomes contain the effects of all sources of uncertainty at

once. We use the Monte Carlo simulation technique because our macroeconomic model is

non-linear and does not admit the extraction of an explicit solution. Furthermore, a parametric

distribution of all sources of uncertainty can be found. Although expert opinion still plays a

valuable role in the estimation process, the additional data sources enable the econometrical

estimation of all covariance matrices associated with the various sources of uncertainty. In some

cases, the estimated distribution of a particular source of uncertainty needs to be adjusted

because it generates economically unrealistic inputs for the Monte Carlo experiments. An

example is the values of parameters, which must be in a theoretical acceptable range.

Our results demonstrate that the main contribution to the total error variance of a four-year

ahead forecast is induced by uncertainty in the exogenous variables. The total error variance of a

short-term forecast is mainly influenced by both uncertainty in the exogenous variables and in

the provisional data. Of nine important macroeconomic variables, the standard error of

investment volume is most sensitive to the four sources of uncertainty. As time progresses,

exports and contractual wages display large standard errors as well. For the latter variable, all

sources of uncertainty seem to contribute evenly to its total error variance. This quantification of

uncertainty is rather comparable with forecast errors for short-term and medium term CPB

forecasts. Minor differences can arise by the fact that in this study the uncertainty related to

government policy was not included. Compared with Don (1994) we have much lower standard

errors for all variables, mainly because the volatility of the international exogenous variables

was much higher in the reference period Don used.

The paper is organized as follows. Section 2 describes the forecasting process, the

macroeconomic model SAFFIER, and the four sources of uncertainty. In Section 3, we study the

Monte Carlo simulation technique including the choice of distributions, variance reduction

techniques and accuracy. In Section 4, we present the estimation techniques and the

implementation which lead to the specific distributions of the various sources of uncertainty. In
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Section 5, we cover the results of the Monte Carlo experiments providing the proportional

contribution of the different sources of uncertainty to the error variance of various endogenous

variables, e.g. GDP and consumption volume. Finally, Section 6 presents concluding remarks

and discussion.
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2 The forecasting process

For concurrent decision making, many parties are interested in future uncertain developments of

macroeconomic variables, e.g. GDP and consumption. Many economic institutes provide such

macroeconomic forecasts mostly based on advanced macroeconomic models describing the

macroeconomic future through deterministic equations. These equations, however, contain

several components which are uncertain and therefore bring about uncertainty in the

macroeconomic model outcomes. In this section, we identify these sources of uncertainty and

establish how they are assimilated in the forecasting process. In the subsequent chapters, we

identify their contributions to the overall forecast error.

2.1 The macroeconomic model SAFFIER

Most short-term and medium-term macroeconomic analyses at CPB are performed with the

macroeconomic model SAFFIER. SAFFIER has been operational since late 2004 and

encapsulates the former CPB models, SAFE (a quarterly model) and JADE (a yearly model).

SAFFIER stands for Short- and medium-term Analysis and Forecasting using Formal

Implementation of Economic Reasoning. For an extensive description of SAFFIER, we refer

to Kranendonk and Verbruggen (2007). In numbers, SAFFIER consists of about 2600 equations

of which 50 equations represent so-called behavioural equations. These equations contain about

300 parameters. The remaining equations are rules of thumb or identities. SAFFIER holds about

3000 variables categorized in 2600 endogenous variables, 250 exogenous variables and 200

autonomous terms.

Figure 2.1 outlines the various components of the forecasting process. Its main component is

the macroeconomic model describing the relations between the endogenous, exogenous and

autonomous variables. These latter two variables constitute input variables forecasting the

variables exogenous to the model or defining constant adjustments to the behavioural equations.

Besides this input data, the model requires lagged endogenous data to initialise the forecasting

process. This data consists of realised historical values of the various macroeconomic variables.

Furthermore, each behavioural model equation contains several parameters. Incorporation of the

above components closes the model, so that a first macroeconomic forecast can be extracted.

This first forecast is assessed by several experts within CPB. These experts can propose model

adjustments bringing in non-model information. The experts often rely on their own models

which are likely to be better equipped in predicting specific macroeconomic variables as

social-security or pension-related variables. The non-model information is fed back into the

model via the disturbance terms and sometimes via parameter adjustments. Several forecast

rounds follow resulting in the final forecast publication.

The schematic representation in Figure 2.1 can be formalized as follows. Letyt denote a
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Figure 2.1 Schematic representation of the elements in a CPB’s forecasting process

Parameters
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vector containingn endogenous variables to be forecasted at timet, yt ∈ Rn. Let xet denote an

ne-vector consisting ofne exogenous variables,xet ∈ Rne. Note thatxet may contain lagged

exogenous variables up toke periods in the past. Letuat denote a vector ofn autonomous terms

anduet a vector of disturbances or error terms,uat ,uet ∈ Rn. The set of parameters of the

behavioural equations are denoted byβ̂ ∈ Rnp with np the number of parameters. The forecast

process can be condensed into

yt = f
(

xet , ..,xet−ke,yt , ..,yt−k,uat ,uet , β̂

)
. (2.1)

The forecast process captured by the vector-forecast functionf containsk lags iny and can be

non-linear in the endogenous variablesyt−i , i = 0, ..,k.3 This system is a simultaneous

equations model.

The forecast model in (2.1) is mostly treated as a deterministic relation describing the

forecastyt . Some of the terms, however, are contaminated with disturbances either by estimation

of their values based on former realisations or by uncertainty about their future values. These

sources of uncertainty induce variations in the forecast outcomes. We investigate the sensitivity

properties of our forecast to the several sources of uncertainty by means of the descriptive

sample statistics of these variations, viz. its mean and its variance.

3 Note that for the first k simulation years the initial variables, xit , and the lagged endogenous variables, yt−i , overlap.
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2.2 The four sources of forecast uncertainty

We distinguish four different sources of uncertainty, viz. uncertainty in provisional data supplied

by Statistics Netherlands (CBS), uncertainty in exogenous data series, uncertainty in the

parameters of the behavioural equations and uncertainty in the error terms.

The first source concerns initial model data uncertainty divided into two types of data

uncertainty, i.e., uncertainty in provisional data (data available before adjustment) and final data

(‘unreliable’ data). The former data uncertainty stems from data obtained from the Dutch

National Accounts (NA) provided by Statistics Netherlands (CBS).4 The CBS publishes four

preliminary estimates before producing their final data values on a calendar year, i.e., the flash

quarterly forecast (45 days after the ending of the calendar year), the regular quarterly forecast

(90 days after the ending of the calendar year), the provisional quarterly forecast (6 months after

the ending of the calendar year), and the revised provisional quarterly forecast published 18

months after the ending of the calendar year. The final figure5 is released 30 months after the

ending of the calendar year. SAFFIER already assimilates the provisional and revised

provisional data into its forecasts as it requires initial (lagged) data. The deviation between these

data values and their final ones introduces a disturbance term into our model. More formally, the

lagged variables of the vectorxet will become a random variable in at least some of its

components.

The second source stems from uncertainty in the exogenous data series, i.e., time series

determined outside the model. These exogenous variables can be divided into two groups: policy

and non-policy variables. The first group concerns assumptions on policy, e.g. government

expenditures or tax rates. The second group consists of variables related to the international

environment including for instance world trade volume and import prices, and domestic

variables like share prices.

The uncertainty associated with the first group is difficult to quantify. First, policy alters

under changing socio-economic and political environments. These changes are difficult to

predict in themselves let alone be elaborated into a changing policy measure. Second, policy

rules are regularly (slightly) adjusted, redefined or even completely removed.The uncertainty in

policy exogenous variables can be captured in terms of a feedback model. For a discussion about

uncertainty under policy feedback in CPB models, we refer to Van Vlimmeren et al. (1993).

Because of the several difficulties, we exclude the exogenous policy variables from our

sensitivity analysis and restrict ourselves to foreign and domestic exogenous variables.6 These

4 The national accounts represent the official statistical review of the Dutch economy.

5 We acknowledge that the word final is chosen a bit unluckily as we exclude any incidental major revision from our

analysis.

6 Because this study is done conditioned on the policy variables, total uncertainty could be underestimated and be lower

then ex-post forecasting accuracy measures indicate.
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exogenous variables are forecasted outside the model by various additional models, data sources

and/or expert information. As is inherent in forecasting, they contain a random component

which is reflected in the endogenous outcomes of SAFFIER. This randomness will become

apparent in the vectorxet in equation (2.1).

The third source of uncertainty concerns the uncertainty in the parameters of our

macroeconomic model. We distinguish two types of parameter uncertainty, i.e. estimated and

fixed parameter uncertainty. Parameter values of a behavioural equation are determined in an

iterative estimation process. First, several model descriptions are estimated using historical

macroeconomic data resulting in a ‘best’ description (estimated parameters). Best is based on

both econometric, e.g. small Mean Squared Error and no bias, and economic grounds, e.g.

correct sign and significance between related economic variables. Second, during the iterative

process certain parameters can be fixed matching econometric results with expert opinion (fixed

parameters).

Apparently, the estimated parameters are uncertain by means of construction. The fixed

parameters on the other hand generate no uncertainty through the estimation process. These

parameters however, contain a random component as they rely on uncertain a priori information.

We primarily focus on uncertainty in the first type of parameters. The uncertainty associated

with the fixed parameters is more difficult to quantify and is described using expert opinion.

Both sets of parameters are investigated separately. A complex model as ours hampers a correct

specification of the covariances between the estimated and fixed parameters. Parameter

uncertainty introduces randomness in the parameter vectorβ̂ and constant vectorc in

equation (2.1).

The fourth source of uncertainty stems from the residual terms in the behavioural equations.

A non-zero residual termuat adjusts the behavioural equations for misspecification and random

events. These residuals terms are obtained in an iterative process using expert opinion. Although

uncertain by definition, we will not model expert opinion. We restrict ourselves to the

uncertainty in the residual terms which surfaces after forecast publication. How should we adjust

the residual terms in our model to reproduce historical macroeconomic data? In this sense, the

residual terms can be seen as an error term. In equation (2.1), this uncertainty corresponds to the

random vectoruet .
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3 The Monte Carlo simulation technique

In this section, we discuss the Monte Carlo simulation method used for investigating the

sensitivity of our macroeconomic forecast to the various sources of uncertainty. On account of

the simultaneity, size, non-linearity and dynamical behaviour of our model, this stochastic

simulation method yields an appropriate tool for the analysis. Monte Carlo simulation is a

parametric simulation method which requires the specification of the density distribution of the

various sources of uncertainty. Alternative methods for forecast sensitivity analysis involve

bootstrapping or model simplification. Bootstrapping is a non parametric simulation method.

For a general description of the method, we refer to e.g. Davidson and MacKinnon (2004). The

method has been advocated for analysing the sources of uncertainty in macroeconomic forecast

models including rational expectations, see e.g. Fair (2003); Kolsrud (2004). In that case, a

parametric method would require assumptions on this expectations as well. Bootstrapping will

incorporate these expectations by default. Furthermore, the method has proven useful when the

determination of an appropriate density function is difficult due to either data shortage or

unclarity about its functional form. Model simplification is appropriate when a closed form of

the solution under uncertainty is required. In that case, dynamic forecast models are often

linearised or significantly reduced.

Monte Carlo simulation evolves in several steps. First, we establish the density distribution

of the disturbing source of uncertainty, i.e. the random component in our macroeconomic model.

For instance, we investigate the sensitivity of a GDP forecast to uncertainty surrounding the

parameter set in the consumption equation. Second, we generate a random sample from this

distribution. In case of our GDP example, a sample ofn parameter sets are drawn from the joint

distribution of the parameters in the consumption equation. For each replication, we then

simulate our forecast model resulting inN different forecasts. These forecasts are derived

conditional on a deterministic representation of the other sources of uncertainty. Finally, the

generated forecasts are combined in several descriptive sample statistics, e.g. the sample mean

and standard error. In particular, we are interested in the sample variance of the forecasted

endogenous variables.

The sample variance of an endogenous variable measures the dispersion of a simulated

sample. Letyt denote the forecast of an endogenous variabley at timet and lety(n)
t denote the

n-th replication at timet of the Monte Carlo simulation. A consistent estimator of the sample

variance ofyt , σ̂t
2, is the mean of the squared deviation of the solutionsy(n)

t from the sample

meanŷt ,

σ̂t
2 =

1
N−1

N

∑
n=1

(
y(n)

t − ŷt

)2
. (3.1)

N yields the number of replications in the Monte Carlo sample and the sample meanŷt is defined

asŷt = 1
N ∑N

n=1y(n)
t . The square root of the sample variance is known as the standard error which
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can be interpreted as a measure of the uncertainty in our model solution; the larger the standard

error, the larger the uncertainty in our forecast.

Note that a Monte Carlo simulation concerns an ex ante simulation. Descriptive statistics are

based on future outcomes. This approach is in contrast with the regularly published CPB ex-post

forecast evaluation study by Kranendonk and Verbruggen (2005, 2006);?. In these studies,

relative and absolute forecast errors are presented, as well as the Theil-coefficient comparing

historical CPB forecasts to outcomes.

We apply a crude Monte Carlo approach, i.e., we generate our input sample by direct or naive

sampling. Furthermore, accuracy bounds are not that restrictive either. The probability density

distributions of our samples already incorporate some inaccuracy. An extensive literature on

more efficient sampling methods, the so-called variance-reduction methods, exists though. We

refer to, for instance Rubinstein (1981) or Fishman (1996). These cost-reducing methods are

developed such as to obtain a smaller standard error using the same number of observations. We

mention antithetic variates, importance, stratified, and correlated sampling.

How many observations should one collect to ensure a particular statistical accuracy of the

sample variance? Denote the variance of an endogenous variableyt as Var(yt). The sample

variance is an unbiased estimator for Var(yt) with standard errors√
N

, wheres in the standard

deviation ofyt . In other words, increasing the sample sizeN reduces the error in our variance

estimator by the order a half. In Section 5, we present results on a convergence test to

demonstrate this order reduction.

Most disturbances (sources of uncertainty) in our analysis are modelled by the multivariate

normal distribution. For completeness, we here repeat this distribution. LetZ = (Z1, ...,Zr )
T

denote a random vector with a multivariate distribution. Letµ andΩ denote its mean vector and

covariance matrix. Its probability density function then reads

f (z) = (2π )−
r
2 |Ω|−

1
2 e−

(z−µ)T Ω−1(z−u)
2 . (3.2)

The applied programming language does not facilitate direct sampling from this distribution.

However, a sample can easily be derived using the Cholesky decomposition of the covariance

matrix Ω. For details, we refer to Appendix B.

Note that the multivariate distribution function is fully specified by its first and second order

moments. This property is exploited extensively when determining the probability distributions

of the sources of uncertainty, see Section 4. The first moment of the multivariate distribution is

set equal to the undisturbed (deterministic) value. The uncertainty is modelled by the

second-order moment, viz. the covariance matrix.
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4 Modelling the sources of uncertainty

Each Monte Carlo simulation requires a probability density function which describes the

uncertainty associated with the particular source of uncertainty. In this section, we model the

four sources of uncertainty. First, we formulate these models in general terms, each model

containing a disturbance term specified by a probability density function. Subsequently, their

distributions are obtained for Saffier-specific components.

Model complexity and data restrictions induce that each source of uncertainty is investigated

independently of the others. Unfortunately, this assumption can be violated as can be deduced,

for instance, from the close relation between the parameter estimates and the error term in a

particular model equation. The uncertainty in an error term is based on observed (historical)

error terms obtained conditional on deterministic parameter values. Controlling for uncertainty

in these parameters will probably explain part of the variation in the error term.7 Separate

estimation of the various sources most likely results in overestimation of their uncertainty. Our

results on the shares of the individual sources of uncertainty in the total model uncertainty

should therefore be considered indicative. Applied data series are discussed, and we consider

intermediate results leading to a correct model specification of the particular source of

uncertainty.8 This section is organised per source of uncertainty.

Although improved over the years, data shortage still interferes with an accurate and fully

integrated estimation of the sources of uncertainty. Where possible, model complexity is reduced

and expert opinion is called upon even further simplifying the model of a particular source of

uncertainty. These restrictions and simplifications are discussed in the implementation parts of

the next paragraphs.

In the implementation stage of the estimated probability distribution, we have introduced

lower and upper bounds. Consider for instance a variablex which is known to be positive.

Random sampling from the normal distribution of this variable can result in a few negative

sample outcomes. These values should be removed from our sample before simulation with the

macroeconomic model. The normal distribution has infinite bounds so extreme values can occur

with a probability depending on the standard deviation of the distribution. In principal, we could

have avoided small sample reductions when we had estimated a probability distribution with

zero probability outside the range of admissible variables. However, when the standard deviation

of the normal distribution remains within limits, our approach suffices. Whenever bounds are

implemented, we assure that their ranges are as wide as possible respecting the symmetric

character of the underlying multivariate distribution. Furthermore, the restricted sample is

evaluated by computing the sample mean and standard deviation of the restricted sample. These

7 The equations are not re-estimated every year when new data from National Accounts become available. This can lead

to more variation in the error-terms then in the situation where the equations would be re-estimated every year.

8 Details on the distribution of the sources of uncertainty are available on request.
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sample statistics should not deviate significantly from their original values.

4.1 Uncertainty in provisional data

Before stating a definite figure, Statistics Netherlands (CBS) publishes several premature

estimates of historical macroeconomic variables. Since they randomly deviate from their final

value, these provisional estimates introduce uncertainty in model outcomes when used as initial

data. CBS publishes final data after 30 months (2.5 years) of the close of the calendar year. A

forecast made at yeart thus incorporates preliminary realisation data for year(t−1) and(t−2).

These data points coincide with the so called provisional (after 6 months) and revised

provisional (after 18 months) data.

Let w1(t) andw2(t) denote vectors containingn provisional andn revised provisional

variables for yeart respectively.w3(t) denotes then-vector containing the ‘final’ data of these

macroeconomic variables. We model

w1(t) = A1w3(t)+b1 +u1(t), (4.1)

w2(t) = A2w3(t)+b2 +u2(t), (4.2)

whereb1 andb2 are parameter vectors containingn elements each, andA1 andA2 are two

diagonal matrices with elementsα1i andα2i for i = 1, ..,n. u1(t) andu2(t) are residual vectors

contemporaneously cross correlated per variable, so

E(u1(t)) = E(u2(t)) = 0,

Var(u1(t)i) = E(u2
1(t)i) = σ

2
1i , Var(u2(t)i) = E(u2

2(t)i) = σ
2
2i ,

E(u1(t)iu2(t)i) = σ
2
12i andE(u1(t)iu2(s) j ) = 0 for sunequalt.

(4.3)

This model is established under specific assumptions which are supported by tests on our data.

Below, we reflect on these assumptions.

First, the variables contained inw1(t), w2(t) andw3(t) concern growth rates. As shown

in Van Vlimmeren et al. (1991), these rates are less sensitive to heteroskedasticity than their level

counterparts. We test for heteroskedasticity inu1(t) andu2(t) using White’s heteroskedasticity

test on allw1i (t) = α1i w3i (t)+b1i +u1i (t) andw2i (t) = α2i w3i (t)+b2i +u2i (t), separately.

Second, we assume that the residualsu1(t) andu2(t) are not serially correlated. As first

reference, we investigate the correlogram of the sample, i.e., we graph both the empirical

autocorrelation and partial autocorrelation function of the sample and investigate the values of

the coefficients of these functions.

Third, most variables are investigated independently of each other. This can yield a severe

model restriction. However, our data series on the CBS provisional and revised provisional data

series are too short to allow estimation of a full correlated system. Although the CBS provisional

data can be recaptured, it is not always possible to reformulate this data into past SAFFIER data
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definitions. Therefore, we only group variables when their macroeconomic interpretation

strongly suggests a connection. For instance, GDP volume consist for about 35% of private

consumption, so investigating their data separately would seem highly implausible. We test for

cross correlations on a one-to-one basis, investigating the correlation between

v1i (t) = w1i (t)−w3i (t) andv1 j (t) = w1 j (t)−w3 j (t) and the correlation between

v2i (t) = w2i (t)−w3i (t) andv2 j (t) = w2 j (t)−w3 j (t) for all i and j .

Fourth, we assume thatw1(t) andw2(t−1) display no cross correlation andw1(t) andw2(t)

do. In that sense, our model differs from Van Vlimmeren et al. (1991) whose model assumes

w1(t) andw2(t−1) to display cross correlation andw1(t) andw2(t) to do not. Van Vlimmeren

et al. (1991) explain cross correlation betweenw1(t) andw2(t−1) by the date of publication of

these data in the National Accounts in year(t +1). These data result from the same available

information. Pursuing this argument,w1(t) andw2(t) should reveal a weaker correlation.

However, a different argument advocates a stronger correlation betweenw1(t) andw2(t).

Although published at subsequent years, these provisional and revised provisional data can

suffer from equidirectional forecast bias. Both data points forecast the final outcome at yeart.

Over- or underestimation in these provisional data can be persistent as the Statistics Netherlands

might be cautious for harsh adjustments. Patterson and Heravi (2004) and Lynch and Richardson

(2004) discuss both approaches. We analyse the cross correlations by examining the cross

correlation betweenv1(t) andv2(t−1) and betweenv1(t) andv2(t). For some variables, neither

of the two cross correlation are significant. In most cases, the cross correlations betweenv1(t)

andv2(t) are. In the model, cross correlations are captured in terms of the covariance matrixΣ.

The implementation of the uncertainty modelled in Van Vlimmeren et al. (1991) is

straightforward. A sample is drawn from the multivariate normal distribution correlating the

disturbances on the revised provisional and provisional data in year(t−2) and(t−1)

proceeding simulation yeart. In our case, the correlated disturbances on the provisional and

revised provisional data succeed each other and thus influence subsequent forecasts. We

therefore independently and identically draw a disturbance on the revised provisional data and

provisional data for year(t−2) and(t−1) from the estimated multivariate distribution.

Finally, we mention that the above tests assume thatA1 andA2 are ‘close’ to the identity

matrix andb1 andb2 are ‘close’ to the zero vector. In words, we assume that the provisional and

revised provisional data are symmetrically distributed around their final realisation with no

systematic under- or overestimation. We use a Wald test onα1i = 1, α2i = 1, b1i = 0 andb2i = 0

to verify this assumption. If not rejected on a 5% significance level, our model description is

implemented withA1 = A2 = In andb1 = b2 = 0. Note that an F-test yields no appropriate

alternative as our model allows for cross correlation in the residualsu1(t)i andu2(t)i .

Summarizing, uncertainty due to provisional data is modelled in a seemingly unrelated

regression approach. Most variables are investigated independently of the others assuming that

any correlation surfaces through cross correlation in the residuals between provisional and
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revised provisional data for yeart. Uncertainty associated with the ‘final’ publication of the

Statistics Netherlands data, i.e. errors due to unreliable data, are not considered. Quantifying this

type of error is troublesome and beyond the scope of a sensitivity analysis of the SAFFIER

model.

Implementation

We model the uncertainty in the provisional data for the following endogenous variables:

employment, exports of manufactured goods (V, P), consumption (V), investment of the private

sector (V), contractual wages, imports of goods (V), and gross national product in market prices

(V, P). A V and/or P denotes that the endogenous variable concerns a volume or price variable.

We apply a sample containing provisional, revised provisional data and final data between 1993

and 2003. This data set is collected fromCentral Economic Plans(CEPs) between 1992 and

2005. The presented variables on year(t−2) and(t−3) in aCentral Economic Planof yeart

coincide with the provisional and revised provisional data in the National Accounts. We

incorporate published CEP data instead of data from the National Accounts, because SAFFIER

data definitions can differ from operational definitions at the CBS.

The length of our data series is short and even further reduced by excluding the data on years

1996, 1997, 2002 and 2003. Every five to ten years, CBS revises its macroeconomic historical

data series. These revisions induce a definition change between presented provisional, revised

provisional and final data for a given yeart. Some of these data are published before and others

after the revision. The data exclusion ensues the major revision in 1995 and 2001.9

We test the endogenous variables for serial correlation and for contemporaneous cross

correlation in the differences between the provisional data and the ‘final’ outcome,v1(t), and in

the differences between the revised provisional data and the ‘final’ outcome,v2(t). Moreover,

we focus on the cross correlation between the endogenous variables. None of the variables show

significant serial correlation. Contemporaneous cross correlation is significant on a 5%-level

only between private consumption (V) and gross national product (V) for both differencesv1 and

v2.

Per variable, we also investigate the cross correlation betweenv1i (t) andv2i (t), andv1i (t)

andv2i (t−1). For most variables, the data demonstrates significance on a 5%-level for the first

cross correlation and not for the second. The remaining variables display no significant cross

correlation on a 5%-level for both differences. As a consequence, we let model (4.1)–(4.2)

describe the uncertainty associated with the provisional data assuming independence between all

variables except for private consumption and gross national product in market prices volumes.

9 The revisions of 1995 are published in 1999 incorporating new data definitions for provisional data in 1997, revised

provisional data in 1996 and final data in 1995. Similarly, the revisions of 2001 are published in 2005 and employ new

data definitions for provisional data in 2003, revised provisional data in 2002 and final data in 2001.
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We estimate our model including both the matricesA1 andA2, and the constant vectorsb1 and

b2. For each variable, we apply subsequently a Wald-test on the restrictionsb1i = 0, b2i = 0.

The test results indicate that we can further simplify our model, putting the constant vectors

equal to zero. Re-estimating our model, we find̂A1 andÂ2.

Note that some of the disturbed endogenous variables form an identity in our model.

Moreover, they are composed of several other endogenous variables and can only be adjusted by

a shift in one or more of these variables. Implementation of the disturbed series thus requires

consistent shifts in these variables. These shifts can be induced by the so called

observations-procedure. This procedure projects certain endogenous variables onto recent

observations respecting the model formulation and adjusting some pre described endogenous

variables by means of the residuals in the behavioural equations. For a reference on this

procedure, we refer to Sandee et al. (1984).

4.2 Uncertainty in the exogenous variables

The uncertainty in the exogenous variables is modelled by using data on observed short-term and

medium-term forecast errors. The short-term forecast concerns a one-year ahead forecast. The

medium-term forecast has a four-year-ahead forecast horizon.10 For both forecasts, we have data

available on the yearly growth rates of various exogenous variables. For the medium-term

forecast, these yearly growth rates comprise mean growth rates over the four-year forecast

period.

First, we restrict ourselves to the one-year ahead forecast error model. Letg1(t +1) denote

the vector with one-year ahead forecasted growth ratesg1i (t +1) of exogenous variablei in year

(t +1) and let the vectorg(t +1) with elementsgi(t +1) present their realisations. Let

u1(t +1) ∈ Rn denote a vector with elementsu1i (t +1) describing the one-year ahead forecast

error ofne exogenous variablesi in year(t +1) conducted in yeart:

u1(t +1) = g1(t +1)−g(t +1). Our data series on the forecast errors have time range

t = 1, . . . ,T.

We assume that the forecast errorsu1(t) are innovationsε1(t) which are normally distributed

with meanµ1 and covariance matrixΣ1. σ1ij is theij -th element of the matrixΣ1. The one-year

ahead forecast errors of the various exogenous variables can be contemporaneously cross

correlated. The innovations are identically and independently distributed over time. Our model

reads

u1(t) = ε1(t) with ε1(t)∼ N(µ1,Σ1) , ∀t = 1..T. (4.4)

WhereM is a diagonal matrix withMρ j j = ρ j

10 In some medium-term forecasts, the forecast horizon consisted of a five-years instead of the regular four-year period.
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In a similar notation, we defineu2(t +2), u3(t +3) andu4(t +4) as the two-, three- and

four-year-ahead forecast errors in the yearly growth rates of the exogenous variables

i = 1, . . . ,ne. The errors are obtained asuki (t +k) = gki (t +k)−gi(t +k), wheregki (t +k)

denotes the growth rate of exogenous variablei in yeart +k made in yeart. Since the growth

ratesgk(t +k) are forecasted in the same yeart and thus evolve from the same information set, it

seems plausible that thek-year ahead forecast errors,uk(t +k) with k = 1, . . . ,4, are correlated.

We assume that this correlation can be captured by the following autoregressive process

uk(t +k) = Mρ uk−1(t +k−1)+ εk(t +k) with εk(t +k)∼ N(µ1,Σ1) , (4.5)

Fork = 0, we haveu0(t) = 0. Pooling the data over theT∗ medium-term forecasts, we can

estimate the correlation coefficientsρ j , the mean vectorµ1 and the covariance matrixΣ1.

Unfortunately, our medium-term forecast data does not provide information on the individual

two-, three- and four-year-ahead (yearly) growth rates,gk(t +k), instead it provides mean yearly

growth rates,gMT(ti). gMT(ti) is the mean yearly growth rate over the period(ti +1) until (ti +4)

for i = 1, . . . ,T∗.

Therefore an alternative approach is necessary to derive the autocorrelation coefficientsρ j .

We model the forecast error in the mean growth rates by a multivariate process,

uMT(ti) = εMT(ti) with εMT(ti)∼ N(µMT ,ΣMT) , ∀i = 1..T∗. (4.6)

Estimating (4.6), we find̂µMT andΣ̂MT . Again, an F-test is applied to test forµMT = 0. We recall

the relation between thek-year ahead forecasts of the growth rates and the mean growth rates

given by the medium-term forecasts,(
1+g1k (ti +1)

)(
1+g2k (ti +2)

)(
1+g3k (ti +3)

)(
1+g4k (ti +4)

)
=

(
1+gMTk (ti)

)4
,whereke = 1, . . . ,ne.(4.7)

Linearizing equation (4.7) around the realisation of the mean growth rate, leads to

u1k (ti +1)+u2k (ti +2)+u3k (ti +3)+u4k (ti +4) = 4uMTk (ti). (4.8)

So combining equation (4.8) and the autoregressive process (4.5), we approximate the

autocorrelation coefficients by equating(
1+ρ +ρ

2 +ρ
3)

σ̂1kk = σ̂MTkk . (4.9)

In words, we set the autocorrelation coefficients such that the resulting standard deviations for a

forecast over a four-year period comply with the standard deviation for observed medium-term

forecast errors derived in (4.6).

Implementation

We consider the following 9 exogenous variables, the long-term interest rates, the share price,

and the growth rate of world trade volume, prices of competitive exports, the prices of final
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imports for re-export, imports of consumption goods excluding energy, imports of raw materials

and semi manufactures excluding energy, imports of energy and imports of investment goods.

For each of the exogenous variables historical data on realisations and forecasts is available. For

the interest rate, we rely on historical data on yearly forecasts and realisations since 1989. For

the share prices, we have data available since 1980. The data series of the other exogenous

variables on yearly forecasts and realisations date back to 1971. Part of this data is analysed

in Kranendonk and Verbruggen (2005).

We define the forecast error as the difference between the next year forecast from the Macro

Economic Outlook (MEV) published in September each year and its (final) realisation value

published by Statistics Netherlands. This difference is chosen for facilitating a comparison

between our results and the results in Don (1994), who also used this forecast error.

Besides data on the one-year ahead forecast error, our analysis requires data on CPB’s

medium term forecasts, which are published in Kranendonk and Verbruggen (2006c).This data

set consists of 10 medium-term forecasts published between 1976 and 2001. Since 1993, i.e. for

three medium-term forecasts, the CPB has presented a cautious and an optimistic scenario for

the Dutch economy. In our analysis, we include the average of the two scenario’s. Before 1993,

the medium-term forecast consisted of a central projection. The data on share prices and the

long-term interest rate are restrictive. Therefore, we assume that the forecast errors of these

exogenous variables do not display an auto regressive pattern. This assumption can be partly

justified from the ‘chaotic’ behaviour of the share price itself.

Based on the model (4.5), we determine the one-year ahead forecast error meanµ1, the

covariance matrixΣ1 and the autocorrelation coefficientsρ j . These estimates are given in?. An

F-test on the meanµ1 of the forecast errors reveals structural under- or overestimation for some

exogenous variables. The growth rate of world trade volume, for instance, is underestimated

with 0.9% point per year, see also Kranendonk and Verbruggen (2005). The exogenous input can

be adjusted such as to cover this over- or underestimation. However, we duplicate the current

exogenous data series, and only deviate this series by application of the estimated covariance

matrix. In this way, we closer resemble CPB forecasts and variation runs.

We simultaneously estimate the growth rate of world trade volume, the price of competitive

exports, and the price of total imports of goods. The disturbance on the latter variable should be

distributed over the various import prices which compose this identity.11 The distribution

factors are determined by weighting the standard deviations of these various prices with their

correlation coefficient with the total import price and their share in the total import price identity.

Their autocorrelation coefficients are chosen to mimic the coefficients of the price of competitive

exports, viz. the prices on imports for re-export, imports of consumption goods excluding

11 SAFFIER distinguishes import prices for consumption goods, investment goods, intermediate goods, re-exports and

energy.
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energy, imports of raw materials and semi manufactures excluding energy, and imports of

investment goods or the price of total imports, viz the price of import of energy. In a similar

fashion, the autocorrelation coefficient of the prices on imports of consumption goods excluding

energy and imports of investment goods, are assumed similar as both are final goods. The

imports for re-export and imports of raw materials and semi manufactures excluding energy are

equally shocked as both are intermediate products.

4.3 Uncertainty in model equation parameters

In this section, we quantify the uncertainty associated with the parameters in the behavioural

equations of the SAFFIER model. First, we consider the special structure of these behavioural

equations, where after we describe the techniques applied when estimating their parameters and

the associated asymptotic covariance matrices.

Following Engle and Granger (1987), the behavioural equations of an endogenous variable in

SAFFIER mostly are modelled by a Error-Correction specification with a long- and short-term

equation. The long-term equation presents a relation between the long-term equilibrium value

and various explanatory variables, i.e.,

lny∗(t) = xlt(t)T
βlt +c, (4.10)

wherey∗(t) ∈ R denotes the long-term equilibrium value of the endogenous variabley(t), and

xlt(t) ∈ Rklt andβlt ∈ Rklt denote vectors containingklt explanatory variables andklt parameters

respectively.c is a constant. The short-term equation determines the growth rate of the

endogenous variabley(t), so capturing the short-term dynamics

ẏ(t) = xst(t)T
βst− ε (lny(t)− lny∗(t))−1 , ∀t = 1, ..,T, (4.11)

wherexst(t) ∈ Rkst, andβst∈ Rkst denote vectors containingkst explanatory variables, andkst

parameters respectively. The error correction term in the short-term equation, partially corrects

for deviations from the endogenous variabley(t) from its equilibrium valuey∗(t). The

parameterε determines the speed of this adjustment.

We assume that the parameters within a behavioural equation both in the long- and short-

term can be correlated. Parameters between different behavioural equations, on the other hand,

are considered uncorrelated. This assumption seems plausible, because in practice most

parameter sets are estimated separately per behavioural equation. Hence, uncertainty in a

parameter set of a behavioural equation is modelled as

(βlt ,c,βst,ε)T = µ̂ +u, u∼ N(0,Σ) , (4.12)

whereµ̂ =
(

β̂lt , ĉ, β̂st, ε̂

)T
denotes the operational set of parameter values andΣ denotes the

covariance matrix of the disturbances on these values. Note that the parameters are assumed

constant over time.
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Within each behavioural equation, we distinguish two sets of parameters, viz. the estimated and

fixed parameters. The uncertainty in the estimated parameters is easily quantified by setting the

covariance matrix in (4.12) equal to the estimator of the covariance matrix of these parameters

conditional on their estimation method. These estimation methods and the covariance matrix

estimators are discussed below. The uncertainty associated with the fixed parameters results

from questioning several experts about their opinion on the variances of the disturbances on

these parameters. Recall that the fixed parameters result from the iterative process described in

Section 2.2. Naturally, the disturbances on the fixed and estimated parameters are correlated.

However, we evaluate their effect on the total model uncertainty separately assuming these

correlations to be small. When questioning experts, these correlations were merely given in sign

than significance.

For estimating parameters in the long-and short-term equations contained in SAFFIER, three

different methods have been used. They are a two-step, a non-linear and a three-stage

least-squares method. We acknowledge that these methods experience some shortcomings when

it comes to estimating systems like (4.10) and (4.11). However, we intend to work with the

original estimation methods which led to the parameter estimates currently employed in

SAFFIER. In appendix C, we shortly discuss the three estimation methods and address their

advantages and disadvantages.

Implementation

SAFFIER contains approximately 50 behavioural equations divided over several

macroeconomic categories, viz. private consumption, government, investment, labour market

etc. We consider 10 prominent equations from these categories. They are the equations for stock

building, private consumption (V), imports of consumer goods, imports of investment goods,

imports of travelling services, the intermediate imports of raw material and semi manufactured

products excluding energy, imports of intermediary services (V), labour and capital demand,

domestic dwellings (P), re-exports excluding energy (V), exports of services (V), exports of

domestic origin (V, P) and the wage equation. Most equations can be subdivided in long- and

short-term equations. In order of appearance, the private consumption until the price of domestic

dwellings are estimated using 2SLS, the long- and short-term exports of services (V) and the

re-exports excluding energy (V) are estimated simultaneously, the exports of domestic origin (V,

P) and the wage equation apply the 3SLS technique. We apply these estimations to quantify the

uncertainty associated with the various parameter sets employed in our model.

Modelling uncertainty associated with estimated parameters seems natural. Along the same

lines, the uncertainty associated with the fixed parameters in our model would be presumed

absent. However, this assumption is invalid. Their values are fixed by expert opinion under

uncertainty of the exact relation. Their uncertainty can even be more prominent than for the
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estimated parameters, because they are mostly chosen to ensure a correct description of the

modelled macroeconomic relation. As mentioned in Section 4.3, the influence of the uncertainty

associated with the fixed parameters will be analysed independently of the uncertainty of the

estimated ones. In the remainder of this section, we concentrate on the estimated parameter sets.

The time range of the data series applied in the estimation of the various equations varies.

Although more data points might increase the accuracy associated with the parameter set, it is

more important that the estimation period is representative for current and future macroeconomic

behaviour. For instance, do additional data points from the seventies increase accuracy when we

introduce high inflation in our estimation data? We therefore adopt the data series from the

original estimations. An equal time range for all equations would be preferable but not advisable.

Re-estimation of the equations would alter the currently operational model at the CPB.

The length of the data series varies between 1971 until 2003, so at most 32 observations are

included in the estimation process. The number of observations is not large, but is not restrictive

for identification of the parameter sets or the corresponding covariance matrix.

We conclude with three remarks. A parameter shock is permanent. The parameters are

disturbed in the shock period and retain their adjusted values until the end of the simulation

period. Second, the parameters per behavioural equation are shocked simultaneously by means

of their multivariate distribution. Our analysis does not allow for the separate identification of

the effect of a disturbance on a specific parameter in the set. Third, some parameters with high

standard errors are restricted within theoretical acceptable upper and lower bound.

4.4 Uncertainty in the error terms in behavioural equations

In this section, we derive the model specification of the uncertainty associated with the error

terms in the behavioural equations. These error terms adjust the behavioural equations for

misspecification or random events. In the forecasting process these terms can be used to add

expert opinion to the model-forecast. A discussion on the effect of expert opinion is published in

Franses, Kranendonk and Lanser (2007). However, we do not intend to model the uncertainty

associated with this expert opinion. Instead, uncertainty associated with the error terms refers to

a second interpretation: how to set the error terms when reproducing historical macroeconomic

data with our model?

When forecasting, the error terms are unknown and thus uncertain by definition. We assume

that the error terms satisfy a zero mean condition. Moreover, we assume that the behavioural

equations forecast the various macroeconomic variables without persistent over- or

underestimation. The zero mean assumption and the specific form of the error terms can be

tested and determined by means of historical data on the error terms.

Assume we haven behavioural equations, each containing one error term. Letr i(t) denote
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the error term of thei-th behavioural equation at timet. We model these error terms as

r i(t) = αi +ui(t), ∀i = 1, ..,n, ∀t = 1, ..,T. (4.13)

whereαi is a constant for behavioural equationi andui(t) yields the residual at timet in

equationi. We point to the possible terminology confusion between residual and error terms.

Ther i(t) are addressed as error terms in the behavioural equationi at timet andui(t) denotes the

residual in the equation modelling the error termr i(t).

The residual termsui(t) can contain an autoregressive part and can display contemporaneous

cross-correlation between variables. First, we test for serial correlation for several different lags

using the Gauss-Newton regression technique. A first indication of possible serial correlation is

provided by a Durbin-Watson statistic for the AR(1)-specification of the residuals. Cross

correlation is visualised by means of a cross-correlogram. The computed cross correlation

coefficients are verified to fall within the approximate two standard error bounds computed as

±2/T, whereT presents the number of considered lags or leads. Cross correlation coefficients

exceeding these bounds differ significantly from zero and should therefore be controlled for in

our model description. Consequently, four possible models for the residual terms result. Below,

we discuss the corresponding estimation techniques and the specifications of the distribution of

the error terms.

The first model assumes that the residuals for the various behavioural equations display no

serial and contemporaneous cross correlation. We estimate

r i(t) = αi +ui(t) with ui(t)∼ IID
(
0,σ

2
i

)
for a giveni, ∀t = 1, ..,T. (4.14)

This model can easily be estimated using standard OLS givingα̂i andσ̂i
2.

In the second model, the error terms display contemporaneous cross correlation and no serial

correlation. We model these error terms as

r(t) = α +u(t) with u∼ IID (0,Σ) , t = 1, ..,T, (4.15)

wherer(t) = (r1(t), .., rn∗(t))
T , α = (α1, ..,αn∗)

T , andu(t) = (u1(t), ..,un∗(t))
T . The

behavioural equations are conveniently renumbered to let the index run from 1 ton∗.

Contemporaneous cross-correlation in the residuals indicates E(ui(t),u j (t)) = σi j and

E(ui(t),u j (s)) = 0, ∀s 6= t.

As estimation method, we use feasible generalized least squares, which yields a consistent

and efficient estimator ofα . This estimation method requires an estimate ofΣ. Generally, one

takes

Σ̂ =
1

T−1
ÛTÛ , (4.16)

whereÛ is anTxn∗-matrix with i-th columnûi , the approximated residuals resulting from OLS

regression of the separate behavioural equations. For our particular model, the covariance matrix

of the feasible GLS estimator of̂α equalŝΣ.
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The third model describes a model where the error terms display serial correlation but no cross-

correlation,

r i(t) = αi +ui(t) with ui(t) = ρiui(t−1)+ εi(t) and εi(t)∼ NID
(
0,σ

2
i

)
. (4.17)

Following standard theory, we apply NLS when estimating (4.17). This estimation method

simultaneously and consistently estimatesαi andρ , α̂i andρ̂i . The variance of the residual

terms,σ 2
i , can then be consistently estimated using

σ̂i
2 =

SSR(α̂i , ρ̂)
T−3

= ∑T
t=2(r i(t)−ρi rt−1i −αi +ραi)2

T−3
. (4.18)

SSR(αi ,ρi) denotes the sum of squared residuals. We divide by(T−3), because there are two

parameters in the regression function, i.e.αi andρi and we incorporate(T−1) observations per

NLS estimation. Subsequently, we apply model (4.17) substitutingρi = ρ̂i , αi = α̂i andσ
2
i = σ̂i

2,

as a description of the uncertainty in the error terms.

We note that other methods like for instance, maximum likelihood or feasible GLS would have

sufficed as estimation methods as well. For a discussion on the pro’s and cons of the various

methods, we refer to e.g. Davidson and MacKinnon (2004). Note that our data series are

relatively short, i.e. at most 30 observations per behavioural equation, so feasible GLS and ML

would be favourable on that point. These methods do not exclude the first observation from the

estimation process.

The fourth model displays both serial correlation and contemporaneous cross correlation. We

consider

r(t) = α +u(t) with u(t) = Mρ u(t−1)+ ε(t) and ε(t)∼ NID (0,Σ) , (4.19)

under the assumption of an AR(1)-process and contemporaneous cross correlation in the

residualsε(t).

We apply non-linear feasible GLS for estimating (4.19). This method first requires an

estimate of the covariance matrixΣ which is generated by NLS ignoring the cross correlation in

the error terms. The resulting estimates are used to compute the residualsε̂i andΣ̂ with elements

σ̂ii = 1
T−3

(
ε̂i

T
ε̂i

)
whereε̂i(t) = r i(t)− ρ̂i r i(t−1)− α̂i + ρ̂i α̂i , for all t = 2, ..,T, andi = 1, ..,N

with N the number of error terms.̂σi j = 0 for all i 6= j . T denotes the number of available

observations. We then perform non-linear GLS to complete our estimation process resulting in

the estimates̃α andM̃ρ . These estimates yield a consistent estimator of the covariance matrixΣ̃

with elements̃σi j = 1
T−3

(
ε̃i

T
ε̃i

)
, whereε̃i(t) = r i(t)− ρ̃i r i(t−1)− α̃i + ρ̃i α̃i , for all t = 2, ..,T,

andi = 1, ..,N. Again, our model description (4.19) combined with the estimatedM̃ρ andΣ̃ can

be used as a description of the uncertainty associated with the error terms.
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Implementation

The error terms in the behavioural equations are investigated using data on realised error terms.

When Statistics Netherlands publishes their National Accounts, our macroeconomic model is

re-run to determine historically consistent error terms. Initial data, exogenous and endogenous

variables are available and the error terms are adjusted as such to ensure simultaneous realisation

of all observed endogenous variables. Our data series ranges at least from 1990 until 2002. For

some variables, more extensive data series exist, however, the chosen period is considered

representative for current error terms.

We focus on the error terms for 18 behavioural equations. They are labour supply, wealth of

domestic dwellings, consumption excluding fixed charges (V), exports of services of domestic

origin (V), exports excluding energy (P), imports of consumption goods excluding energy (V),

of investment goods (V), of raw materials and semi manufactures excluding energy (V), of

energy (V), of services by the market sector (V), and of services by consumption (V), investment

of the private sector (V), investment of firms in equipment (V), employment, contractual wages

in the market sector, exports of services of domestic origin (P) and consumption excluding fixed

charges (P).

We distinguished four possible models describing the uncertainty associated with the error

terms. After testing for serial and contemporaneous cross-correlation, two models are

applicable, i.e. the first and the fourth model. The first fourteen error terms display no significant

serial or cross correlation. The latter four terms can be divided in two systems. In addition, these

error terms contain an autoregressive part.
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5 Results

In this section, we present the results of the Monte Carlo experiments. We consider the

sensitivity of nine endogenous variables with respect to uncertainty in the provisional data,

exogenous variables, parameters and residuals. These nine variables comprise the main variables

of interest in the analysis of the accuracy of CPB forecasts obtained with the macroeconomic

model SAFFIER, see Kranendonk and Verbruggen (2006). In this study, realisations are

compared to historical forecasts. We concentrate on gross domestic product (V, P), private

consumption (V), investment (V), exports (V, P), employment and contractual wages in the

market sector, and the consumer price index. Again, a V or a P indicates volume or price.

Our presentation is divided into five parts. First, we present the simulated standard errors of

the endogenous variables for each Monte Carlo experiment combined per source of uncertainty.

The meaning of these standard errors is explained and some precautionary remarks are made

about their applicability in the derivation of forecast intervals as opposed to point estimates. We

also make comparisons with the study of Don (1994) and forecast errors of CPB short and

medium-term forecasts. Second, we verify the implications of the assumption that the sources of

uncertainty occur linearly and independently in our model. This assumption is known to be

violated. However, how severely does this violation affect our results? Third, we discuss the

number of replications necessary for a sufficient approximation of the variances of the

endogenous variables induced by the different sources of uncertainty. Fourth, we investigate the

robustness of our results under variation in the central path underlying our macroeconomic

model. SAFFIER is a non-linear model, so disturbances on a central path do not enter the

resulting endogenous variables linearly. Moreover, a different central path does not imply the

addition of a linear term to the endogenous variables, consequently affecting the distribution of

the induced disturbances by the four sources of uncertainty. Finally, we combine all Monte Carlo

experiments to identify the contributions of the four main sources of uncertainty to the total

forecast error variances of the endogenous variables.

5.1 The Monte Carlo experiments: Technical details

Our basic model starts simulating in year 2010, generating output on a yearly basis. The sources

of uncertainty are disturbed at the beginning of the year 2010. Disturbances on the provisional

data are implemented in year 2008 and 2009. They impinge on predicted outcomes of the

endogenous variables. The disturbances of the provisional data, exogenous variables and

residuals act on the central path describing the deviation free economy. We apply the central

path taken from theCentral Economic Plan, CPB (2006). Although our macroeconomic model

allows for a longer time horizon, we simulate over a period of four years. The description of the

uncertainty associated with the exogenous variables does not permit a longer time range,
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because its distribution is calibrated over a four year horizon. An extended forecast would

require additional data and probably a different estimation strategy.

For each source of uncertainty, we runN simulations with SAFFIER forN different

disturbances drawn from a prescribed distribution. The resultingN trials of the nine endogenous

variables are then summarized in a sample mean, a sample variance, and a standard error. As

mentioned in Section 3, the sample variance of an endogenous variable is a measure for the

uncertainty associated with this variables induced by the investigated source of uncertainty. The

sample standard error̂σ is obtained as the square root of the sample variance. By rule of thumb,

a 2̂σ -interval around the sample mean economic path contains 95% of the possible economic

outcomes under the applied uncertainty. Note that this rule of thumb stems from univariate

normal theory. In case of a linear macroeconomic model, a multivariate normally distributed

disturbance results in a multivariate normally distributed set of endogenous variables.

Each source of uncertainty is investigated separately. In total, we conduct 46 Monte Carlo

experiments ranging from disturbances on the exogenous long-term interest rate to the

parameters of the wage equation.

5.2 Estimated standard errors

In Table 5.1, we present the standard errors of the nine endogenous variables induced by the four

sources of uncertainty computed by Monte Carlo simulation with 2000 replications per

experiment. This table should be read as follows.

SAFFIER generates a cumulative scaled path describing the development of the economy.

Each endogenous variable is presented as an index value, viz. the endogenous variable is scaled

by a reference observation. In our experiments, the observation preceding the first year of our

simulation is chosen as a reference point. It concerns observations from the year 2010. Note that

this reference point is unaffected by any disturbances in the shock year. The index representation

is convenient for variant analysis and illustration of growth rates. For example, consider an

output time series on private consumption volume which contains an entry 1 in 2010, the

reference year, and an entry 1.03 in 2013. Within three years, consumption volume has grown

with 3% point.

Our standard errors are computed around the mean of the index representation of the

endogenous variables. An entry of 0.6 in Table 5.1, e.g. for consumption in year 2 (2012) under

uncertainty in provisional data, thus indicates a standard error of 0.6% in that year. Note that for

a linear model, the central path and the sample mean of the economy coincide using a sufficient

amount of replications. In case of our non-linear model, the differences between the sample

mean and the central path turn out to be minor.

We assume that the various sources of uncertainty are independently distributed and that our

macroeconomic model is linear in these sources. Consequently, we can obtain the sample
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Table 5.1 Standard errors in % point induced by the four sources of uncertainty (N=2000).

Year 1 (2011) Year 2 Year 4

Standard errors provisional data

GDP (V) 0.5 0.6 0.6

Consumption (V) 0.4 0.5 0.7

Investment (V) 4.0 4.2 4.2

Exports (V) 0.9 0.9 1.1

Employment market sector 0.7 0.6 0.4

GDP (P) 0.6 0.6 1.2

CPI 0.5 0.5 0.7

Exports (P) 0.3 0.3 0.5

Contractual wages 0.8 1.2 2.1

Standard errors exogenous variables

GDP (V) 1.1 1.5 2.5

Consumption (V) 0.6 1.1 2.4

Investment (V) 2.1 4.8 6.9

Exports (V) 2.6 3.9 6.3

Employment market sector 0.3 1.2 2.1

GDP (P) 0.8 1.1 2.4

CPI 0.7 1.4 1.8

Exports (P) 1.6 2.8 3.6

Contractual wages 1.0 1.5 3.7

Standard errors parameters

GDP (V) 0.3 0.5 0.9

Consumption (V) 0.6 0.9 1.5

Investment (V) 2.7 4.3 6.1

Exports (V) 0.5 0.9 1.5

Employment market sector 0.5 1.0 1.5

GDP (P) 0.4 0.8 1.8

CPI 0.3 0.5 1.0

Exports (P) 0.2 0.3 0.6

Contractual wages 1.0 1.7 3.7

Standard errors residuals

GDP (V) 0.3 0.3 0.5

Consumption (V) 0.4 0.5 0.6

Investment (V) 1.0 1.6 2.0

Exports (V) 0.4 0.5 0.5

Employment market sector 0.9 1.2 1.1

GDP (P) 0.7 1.1 1.9

CPI 0.5 0.7 1.1

Exports (P) 0.2 0.3 0.5

Contractual wages 1.1 1.6 2.8
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Table 5.1 Standard errors in % point induced by the four sources of uncertainty (N=2000),continued.

Year 1 (2011) Year 2 Year 4

Standard errors total

GDP (V) 1.3 1.7 2.8

Consumption (V) 1.0 1.6 3.0

Investment (V) 5.4 7.9 10.3

Exports (V) 2.8 4.1 6.5

Employment market sector 1.3 2.0 2.8

GDP (P) 1.3 1.9 3.8

CPI 1.1 1.7 2.5

Exports (P) 1.6 2.9 3.7

Contractual wages 1.9 3.0 6.3

variance of the endogenous variables under two or more sources of uncertainty by adding the

sample variances of the separate sources. This principle is applied in Table 5.1. The sample

variances are added resulting in a variance for each main source of uncertainty. In turn, another

addition results in the sample variance under total uncertainty.

We acknowledge that the linearity and independence assumption is easily violated. For

instance, the assumption that parameter uncertainty and uncertainty in the residuals are

uncorrelated is unlikely. A yearly estimation of the parameters, when new data for the past in the

national account are available, could lead to smaller residuals.12 Additionally, parameters and

exogenous variables will enter our model multiplicatively violating the linearity assumption.

The text box ‘The assumptions behind an additive impact analysis on variances’ demonstrates

that negligence of the non-linear appearance of various sources of uncertainty can severely affect

our outcomes. However, computations of the simultaneous investigation of parameters and

exogenous variables show that these problems do not occur in our calculations. Computed

variances differ from their additive derivation by separate investigation, however these variations

can be accepted as minor. Similar conclusions are drawn in Don (1994).

We consider the standard errors under total uncertainty which are depicted in the final block

of Table 5.1. These errors illustrate that investment (V) is most sensitive to total uncertainty. Its

standard error increases from 6% in 2010 to almost 12% in 2013. Exports (V) and contractual

wages are also relatively sensitive to uncertainty in our model. Exports (V) displays a 3%

standard error in 2010 and contractual wages has a standard error of 2% in that period. The other

blocks unravel which source of uncertainty is responsible for these standard errors. Investment

(V) suffers from the uncertainty in the provisional data, but becomes more affected by the

uncertainty in the parameters and exogenous variables over time. The provisional data on

12 This is especially when revised figures back to 1969 are published, as a result of major revisions of the system of

national accounts.
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The assumptions behind an additive impact analysis on variances

The impact of the different sources of uncertainties on various endogenous variables is measured by their share in the

variance of these variables. Consider, for instance, the effects of uncertainty in parameters from the exports of domestic

origin and from the effects of uncertainty in the exogenous data series on the price of exports of competitors. For these

sources of uncertainty separate Monte Carlo experiments are conducted. The variance of volume of exports is then found

by addition of the variances approximated by the separate Monte Carlo experiments. Implicitly, we assume here that

the sources of uncertainty are independent and that they linearly affect the endogenous variable of interest, as will be

explained below. Some sources of uncertainty, however, enter the equations of the endogenous variables non-linearly.

We mention again the exports of domestic origin. This behavioural equation contains the parameters α1 and β2 and the

exogenous data series on prices of exports of foreign competitors bfc, which are both included in our sensitivity analysis,

in a multiplicative way.

Potentially, the implicit linearity and independence assumption can severely affect the conclusion on the impact of the

various sources of uncertainty on the variance of the endogenous variables. The following example serves as an illustration

of such a deficiency.

Assume that x and y are independent normally distributed variables, i.e., x ∼ N(0,σ
2
x ) and y ∼ N(0,σ

2
y ), and define

z1 = x +y and z2 = xy. By definition, the variances of z1 and z2 yield

Var(z1) = Var(x +y) = Var(x)+Var(y) = σ
2
x +σ

2
y . (5.1)

and

Var(z2) = Var(xy) = Var(x)Var(y) = σ
2
x σ

2
y . (5.2)

We first run a Monte Carlo experiment varying the x component and keeping y constant at its expected value Ey = 0.

Asymptotically, the variance of z1 will converge to the variance of x. Similarly, a Monte Carlo experiment varying y and

fixing x at its expected value Ex = 0 results in a variance on z1 converging to the variance of y. In this case, we can

add the variances of z1 found in the two Monte Carlo experiments to construct an estimate of the total variance of z1.

Asymptotically, we find Var(z1) = σ
2
x + σ

2
y . Two similar Monte Carlo experiments for estimation of the z2 variable would

yield a zero variance for z2 in each Monte Carlo experiment. Note that by fixing one of the variables to its expected value,

z2 will vanish in each Monte Carlo experiment. Consequently, the total estimated error variance of z2 will be zero. This

variance does not converge to the value given by equation (5.2).

When interpretating Table 5.1 and Table 5.6, we should keep in mind that the figures might suffer from non-linearity

problems as described above.

investment volume is highly uncertain. The estimated covariance matrix of the provisional data

contains a large entry for the investment (V) variance. A more detailed breakdown of the Monte

Carlo results shows that the uncertainty in the exogenous international prices and world trade

volume is largely responsible for the standard error of investment (V). The parameters of the

investment equation with its relatively long lag structure lead to an increase of the standard

errors as well. Exports (V) react strongly to uncertainty in the international prices and world

trade volume determining most of the foreign economic picture. Contractual wages (P) display a

more evenly distribution of the standard errors over the sources of uncertainty.

The standard errors in Table 5.1 are not suitable for the construction of confidence intervals

in short-term forecasts. An ongoing discussion among forecasting institutes concerns the
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presentation of point estimates or confidence intervals in their forecasting reports. Confidence

intervals are considered to stress the uncertainty associated with economic forecasts. Others in

favour of point estimates say that confidence intervals are difficult to interpret. More importantly,

they consider the method of forecasting inappropriate for estimating confidence intervals as

forecasts are expert-based or stem from different countries, each using other quantative tools.

For an inventory on forecast representation by 16 large institutes, we refer to Thissen (2005).

We think that our standard errors have some additional interpretation problems. First, they

are not computed under total uncertainty. Our analysis captures the most important sources of

uncertainty but has no full coverage. More importantly, our analysis does not include a fifth

source of forecast uncertainty, viz. uncertainty introduced by so called adjustments (autonomous

terms) based on expert opinion. Unforeseen events or measures are not explicitly modelled in

SAFFIER. However, these terms are actually the main transmitters of uncertainty. Therefore, the

presented standard errors are indicative for the uncertainty introduced by the considered sources

of uncertainty, but do not suffice for a forecast interval interpretation.

5.3 Comparison with uncertainty standard errors published in Don (1994)

In table 5.2 we compare the standard errors calculated with the current CPB macro-econometric

model SAFFIER with the results Don found in 1994 with a small macro-model. All our standard

errors are lower than in Don (1994).

Table 5.2 Standard errors compared with Don (1994)

Don(1994)

Year 1 Year 4 Year 1 Year 4

GDP (V)a 1.3 2.8 2.3 5.7

Consumption (V) 1.0 3.0 2.3 6.1

Investments (V) 5.4 10.3 9.6 17.0

Exports (V) 2.8 6.5 5.0 13.4

CPI 1.1 2.5 2.5 14.8

Contractual wages 1.9 6.3 2.1 15.2

a Don (1994): production enterprises

Especially the uncertainty related to the exogenous variables is much lower then some fifteen

years ago. Higher volatility of (international) prices and world trade in the seventies and early

eighties dominated the historical period relevant for the calculated standard errors of the

exogenous variables in the study of Don (1994). Our sample period has relatively more years

with moderate price and wage increases. Also uncertainty associated with the residuals is lower

today, probably because the parameters in the equations of the old model were not based on

estimated equations but calibrated applying information from other models. Standard errors
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from provisional data are larger in our study, probably because our model contains more

dynamics than the one applied in Don(1994). For most behavioural equations in our current

model Saffier employs ECM-specifications.

5.4 Model uncertainty and realised forecast errors

In the introduction of this paper is mentioned that the analysis of ex-post evaluations of

CPB-forecasts gives an impression forecast uncertainties. Is it possible to give an explanation of

those forecast errors by the analysis of the Monte Carlo simulations? In table 5.3 we present a

comparison between the standard errors from the Monte Carlo simulations and the standard

errors from the published short- and medium-term CPB forecasts. The short-term forecasts used

in this table concern the forecasts for next year published in September in the Macro Economic

Outlook (MEV). The medium-term forecasts concerns the forecast with a horizon of four or

sometimes five years ahead. The statistics are rather comparable for most variables. The

simulated uncertainty in general could be lower than the real-time errors, because not all sources

of uncertainty are simulated in this study. As mentioned in paragraph 2.2 we excluded the

uncertainty related to the (exogenous) policy variables. The effect of ‘wrong’ assumptions on the

government policy is probably larger on the medium term than for next year. There is a direct

effect on GDP, by effecting government consumption and a indirect effect because fiscal policy

influences purchasing power of consumers and private consumption. We also excluded shocks

on the interest rates and share prices, which are relevant for households expenditures.

Table 5.3 Forecast accuracy and model uncertainty

Monte Carlo Simulations Forecast errors

Year 1 Year 4 Year 1 Year 4

standard errors RMSEb

GDP (V)a 1.4 0.8 1.6 1.3

Consumption (V) 1.0 0.8 1.8 1.6

Investments (V) 6.1 2.8 5.5 4.1

Exports (V) 2.9 1.5 4.6 1.8

Employment 1.3 0.7 1.0 0.8

CPI 1.0 0.8 1.1 1.4

Exports (P) 1.6 1.0 6.4 3.3

Contractual wages 1.9 1.9 1.5 2.1

a Don (1994): production enterprises
b Root Mean Square Error

The largest differences in table 5.3 are related to the export prices, where the uncertainty is much

lower than forecast errors in the past. This can be explained by the fact that the simulations were

done with our current model which uses the current energy-intensities and price equations. This
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information is relevant for the near future, but can not explain forecast errors in the past when

the energy-intensity was much lower. For contractual wages and investments the simulations are

too high compared to realized errors for the short term horizon. Probably, the explanation for the

lower forecast errors is we use the add-factors of some behavioural equations to introduce

specific information like concluded wage contracts and approved building permits. Although

simulated uncertainty for the expenditure categories and imports underestimate the real

uncertainty, the total effect on GDP is rather small, especially for the GDP-growth next year.

5.5 Number of replications in the Monte Carlo experiments

The standard errors in Table 5.1 originate from Monte Carlo experiments with 2000 simulations.

How many trials are necessary for an accurate estimation of the standard errors derived from

Monte Carlo simulation? In a box, we shortly discuss some theoretical approaches to assess the

relation between the number of replications and the accuracy of the standard errors.

We apply a more practical approach then discussed in the box to assess the relation between

the number of trails and the accuracy of our results. The above described theoretical results are

not directly applicable when the error concerns the error in the sample variation and the standard

error. Although these sample statistics can be written in terms of a moment, the results do not

apply, because they incorporate the sample mean. Second, the available computing budget is not

restrictive, so the need for a thorough analysis of an adequate number of replications is not that

pressing. For efficiency reasons, it can be desirable to remove unnecessary trials. Finally, the

distributions of the sources of uncertainty already contain some inaccuracy. These distributions

have been derived under strong and not always verifiable assumptions. Strong accuracy

restrictions on the Monte Carlo outcomes are redundant.

We decide on the number of replications by running our Monte Carlo experiments for an

increasing number of replications. We double the number of trials fromN = 125 toN = 2000.

In Table 5.4, we present the standard errors in GDP volume for each source of uncertainty in

2010, 2011, and 2013, respectively. The standard errors are given in % point. GDP volume is

considered, because its variation is indicative for variation in our model. GDP volume is

composed of private consumption, investment, imports, exports and government expenditure.

The results demonstrate that variations in the standard errors under increasingN are minor.

The variations on the standard errors induced by uncertainty in the provisional data, parameters

and residuals are negligible. The variation in the standard errors induced by the exogenous

variables fluctuates around 1.1% point. The order of variation, a hundred percent point, suggests

that 2000 replications more than suffice for an accurate estimate of the standard errors.
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Theoretical relation between number of replications and the standard errors

Most theory is concerned with the derivation of the integral

µ =
∫

R
k (x) f (x)dx, (5.3)

which denotes the expected value of a random variable k(X) with probability density function f (x). Let µ̂N denote the

approximation of µ by means of a Monte Carlo experiment with N trials. The error in µ̂N depends on the number of

replications N. When N increases, the error decreases. The error term is related to statistical sampling variation. The

law of large numbers imposes that when N approaches infinity µ̂N approaches µ with probability one. However, we are

interested in an exact relation between a finite number of replications N and the error term of µ̂N.

We discuss some common approaches to assess this relation. The standard error of k (X) provides a first estimate of

the statistical sampling variation. Unfortunately, the standard error can be misleading, as it is derived by simulation itself

including the estimated mean µ̂N. Confidence intervals serve as a better indicator for statistical sample variation. They

depict the sample bounds of a given (1− δ )%-interval surrounding the sample mean. A third approach is based on

Chebyshev’s inequality, see e.g. Fishman (1996).

Proposition 1. Let Z denote a random variable with distribution function F defined on(−∞,∞), EZ = 0, and σ
2 =

varZ = EZ2 < ∞. Then, forβ > 0,

P

(
|Z|
σ
≥ β

)
≤ 1

β 2 .

Chebyshev’s inequality implies convergence in probability of µ̂N to µ . Chebyshev’s inequality can be helpful to derive a so

called (ε ,δ ) absolute error criterion. For all sample N greater than or equal to N∗ the error specification P[|µ̂N− µ |< ε ]≥
(1− δ ) is satisfied. For certain distributions, a closed form of N∗ can be found. Mostly, the absolute error criterion leads

to a large worst-case sample size motivating the need for alternative approaches.

The Central Limit Theorem can facilitate the achievement of the (ε ,δ ) absolute error criterion under a smaller sample

size Ñ. Chebyshev’s inequality is then rewritten in terms of a random variable subject to a Central Limit Theorem. For

sufficiently small ε , the distribution of this variable approaches the standard normal distribution. Ñ will be given in terms

of this limiting distribution. Unfortunately, it can be difficult to determine Ñ when ε is sufficiently small. For a discussions,

on more advanced methods we refer to Fishman (1996) and Ripley (2006).

5.6 Robustness test for path independence

We have assumed that the sources of uncertainty appear linearly in our model, and that they are

independent. However, our macroeconomic model is clearly non-linear in some of the sources,

and non-linear in the endogenous variables. In this section, we first assess the latter non-linearity.

When a non-linear model with different underlying central paths is exposed to Monte Carlo

disturbances, the resulting sample variances on the endogenous variables will be different.

Moreover, a differing undisturbed reference situation will result in different simulated variances.

We generate two different undisturbed reference situations by varying the year in which the

Monte Carlo disturbances are imposed. Our basic model starts simulating in 2007 and disturbs

the economy in 2010. The underlying central (undisturbed) path displays a rise in

unemployment from 0.7% in 2010 to 2.6% point in 2014. The economic situations in these years
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Table 5.4 Standard errors in GDP volume (in % point).

Year 1 (2011) Year 2 Year 4

Standard errors provisional data

GDP (V)

N=125 0.48 0.56 0.57

N=250 0.48 0.55 0.58

N=500 0.48 0.56 0.58

N=1000 0.49 0.56 0.58

N=2000 0.49 0.57 0.59

Standard errors exogenous variables

GDP (V)

N=125 1.03 1.46 2.35

N=250 1.06 1.51 2.44

N=500 1.05 1.50 2.41

N=1000 1.05 1.49 2.43

N=2000 1.08 1.54 2.51

Standard errors parameters

GDP (V)

N=125 0.30 0.45 0.80

N=250 0.32 0.48 0.86

N=500 0.34 0.52 0.91

N=1000 0.33 0.51 0.88

N=2000 0.33 0.50 0.87

Standard errors residuals

GDP (V)

N=125 0.29 0.31 0.42

N=250 0.29 0.32 0.44

N=500 0.29 0.32 0.45

N=1000 0.30 0.33 0.45

N=2000 0.30 0.33 0.46

differ significantly. A second round of Monte Carlo experiments therefore exposes the economy

to its Monte Carlo shocks in 2014.

In table 5.5, we present standard errors in GDP volume per source of uncertainty for two

different shock years, viz. 2011 (year I) and 2014 (year II). We compare the induced standard

errors after 1, 2 and 4 years respectively. The results demonstrate that under the non-linearity of

our model, the choice of the central path influences the Monte Carlo outcomes. For instance, the

standard errors induced by the parameter uncertainty are smaller for shocks in year I than in year

II. The low unemployment in year I is exceptional and might induce the non-linear character of

the model.

The second assumption on non-linearity between the sources of uncertainty is verified by

running our Monte Carlo experiments per source of uncertainty separately and simultaneously.

Subsequently, their outcomes are tested for the additivity property of the variances under

independence. The shock year is kept constant at 2011. In this way, we investigate the impact of
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Table 5.5 Standard errors in GDP volume for two different shock years, year I (2011) and year II (2014) (N=2000).

Year 1 Year 2 Year 4

Standard errors provisional data

GDP (V)

Year I 0.49 0.57 0.59

Year II 0.55 0.56 0.61

Standard errors exogenous variables

GDP (V)

Year I 1.08 1.54 2.51

Year II 1.50 1.99 2.65

Standard errors parameters

GDP (V)

Year I 0.33 0.50 0.87

Year II 0.44 0.64 1.05

Standard errors residuals

GDP (V)

Year I 0.30 0.33 0.46

Year II 0.31 0.40 0.64

non-linearity between the parameters and residuals of the equations. In addition, these sources

are expected to demonstrate some correlation as the distribution of the residual of an equation is

affected by an accurate estimation of its parameters. The results demonstrate that the violation of

the linearity assumption has no significant impact on our outcomes.

5.7 Decomposition of the total error variance

The standard errors given in Table 5.1 directly quantify the uncertainty in the endogenous

variables induced by the various sources of uncertainty. In this section, we extend this analysis

by assessing the relative impact of the different sources. Table 5.6 presents the contributions of

the four sources of uncertainty to the total error variance of nine endogenous variables.

Consider, for instance, the endogenous variable GDP volume, GDP(V). The entries in Table 5.6

show that the uncertainty in the provisional data, the exogenous variables, the residuals and the

provisional data contribute to the total error variance of GDP (V) for respectively, 24%, 67%,

3% and 6%. In accordance with earlier reasoning, we derive these percentages under the

assumption that the various sources of uncertainty are independent and occur linearly in our

model. Consequently, we can add the separate Monte Carlo sample variances to obtain the total

error variance of the endogenous variables. The various contributions are then easily computed.

We present contribution data for various time periods after the imposed disturbances, viz. after

1, 2 and 4 years respectively.

A detailed decomposition of the error variances per source of uncertainty, is available in

appendix A.
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The results demonstrate that the exogenous variables constitute most of the uncertainty in GDP

(V, P), private consumption (V), CPI (P) and exports (V, P). The impact of the uncertainty

associated with the exogenous variables, international prices and world trade volume, is

considerable. The uncertainty in contractual wages is more or less evenly distributed over the

four sources of uncertainty. The uncertainty in the provisional data is largely responsible for

uncertainty in investment volume, although this impact diminishes over time. Employment in

the market sector is relatively sensitive to uncertainty in the provisional data and the residuals.

In the second forecast year, the contribution pattern becomes more distinguished. As

expected, the impact of the uncertainty in provisional data on the total error variances reduces.

Although still significant, even its contribution in the total error variance of investment is

reduced from 68% to 21% within four years. The variance induced by uncertainty in provisional

data increases over the forecast horizon, however its growth diminishes. The impact of

uncertainty in the exogenous variables is strengthened over time. For all nine variables, the main

contribution to the total error variance of the four-year ahead forecasts is induced by the

exogenous variables. The only exception is the contractual wages, for which the contribution by

parameter uncertainty competes with that of uncertainty in the exogenous variables. Except for

export prices, uncertainty in the exogenous variables is mostly felt on the price side of the

economy as this uncertainty resides in international prices. The parameter uncertainty is

represented in private consumption (V), GDP (V) and CPI (P).
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Table 5.6 Contributions of the four sources of uncertainty to the total error variance (in % of the total error

variance). (N=2000)

2011 2012 2014

Contributions provisional data

GDP (V) 15 11 5

Consumption (V) 15 9 5

Investment (V) 55 29 16

Exports (V) 10 5 3

Employment market sector 32 9 2

GDP (P) 23 11 11

CPI 24 8 9

Exports (P) 4 1 2

Contractual wages 18 15 12

Contributions exogenous variables

GDP (V) 73 78 83

Consumption (V) 38 49 66

Investment (V) 16 37 44

Exports (V) 84 89 92

Employment market sector 4 34 56

GDP (P) 39 36 41

CPI 48 67 53

Exports (P) 93 97 94

Contractual wages 28 24 35

Contributions parameters

GDP (V) 7 8 10

Consumption (V) 33 33 24

Investment (V) 25 30 35

Exports (V) 4 5 5

Employment market sector 17 22 27

GDP (P) 12 19 23

CPI 6 7 17

Exports (P) 1 1 2

Contractual wages 25 32 34

Contributions residuals

GDP (V) 6 4 3

Consumption (V) 14 9 5

Investment (V) 4 4 4

Exports (V) 2 1 1

Employment market sector 46 36 15

GDP (P) 26 33 26

CPI 22 18 20

Exports (P) 1 1 2

Contractual wages 29 28 19
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6 Conclusions and Recommendations

Uncertainty is an inherent attribute of any macroeconomic forecast. An essential auxiliary task

of a forecasting institute is to provide insight into this uncertainty to its users. To this end, we

have analysed the impact of four sources of uncertainty on the CPB’s macroeconomic forecast

model SAFFIER, viz. uncertainty in provisional data, uncertainty in exogenous variables,

uncertainty in model parameters and uncertainty in error terms of the behavioural equations.

The uncertainty in the model was assessed by means of the Monte Carlo method. For each

source of uncertainty, the standard error was computed as a measure of the resulting uncertainty

in the macroeconomic forecast of the nine most important endogenous variables: gross domestic

product (V, P), private consumption (V), investment (V), exports (V, P), employment and

contractual wages in the market sector, and the consumer price index. Furthermore, the relative

impact of the four sources of uncertainty on the overall forecast error was assessed by computing

the contribution of each source to the total error variance of each endogenous variable.

The results demonstrate that the main contribution to the total error variance of a

four-year-ahead forecast emanates from uncertainty in the exogenous variables. The total error

variance of a short-term forecast is mainly influenced by uncertainty in both the exogenous

variables and the provisional data. Of all nine variables, investment volume is most sensitive to

the four sources of uncertainty. In the medium-term, exports and contractual wages exhibit large

standard errors as well. Error term uncertainty and parameter uncertainty seem to be dominated

by uncertainty in the exogenous variables. Modellers often rely on model adjustments or

reestimations of equations to reduce the uncertainty in their forecasts. Although model

evaluation and adjustments are relevant on their own merits, a reduction of the uncertainty in the

exogenous variables is more pertinent. However, generally these variables are forecasts

themselves, which hampers the reduction of their uncertainty. Moreover, their uncertainty is

mainly attributable to foreign exogenous variables, such as energy and import prices, which are

profoundly difficult to predict.

For future research, we recommend to reconsider the various models of uncertainty. In this

paper, the impact of the various sources of uncertainty is measured by means of their

contribution to the total error variance under the assumptions of model linearity, and linearity

and independence of the sources of uncertainty. Is it possible to relax these assumptions? Can

we determine a simultaneous density function combining the sources of uncertainty or would the

adoption of a bootstrapping approach be useful? Furthermore, are there alternative indicators to

measure the relative impact of the different sources that avoid the restrictions imposed by

linearity and independence?
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Appendix A Decomposition of the total error variance per
source of uncertainty

Table A.1 Contributions per exogenous variable (system) to the total error variance induced by uncertainty

associated with the total set of exogenous variables

Year 1 Year 2 Year 4

Contributions world trade and international prices

GDP (V) 99 97 96

Consumption (V) 70 74 92

Investment (V) 90 92 92

Exports (V) 100 100 100

Employment market sector 98 98 97

GDP (P) 100 100 97

CPI 100 100 98

Exports (P) 100 100 100

Contractual wages 98 96 100

Contributions long-term interest rate

GDP (V) 1 3 4

Consumption (V) 30 26 8

Investment (V) 10 8 8

Exports (V) 0 0 0

Employment market sector 2 2 3

GDP (P) 0 0 3

CPI 0 0 2

Exports (P) 0 0 0

Contractual wages 2 4 0

Contributions share price

GDP (V) 0 0 0

Consumption (V) 0 0 0

Investment (V) 0 0 0

Exports (V) 0 0 0

Employment market sector 0 0 0

GDP (P) 0 0 0

CPI 0 0 0

Exports (P) 0 0 0

Contractual wages 0 0 0

V : Volume

P : Price
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Table A.2 Contributions per initial variable (or system of variables) to the total error variance induced by provi-

sional data uncertainty

Year 1 Year 2 Year 4

Contributions employment

GDP (V) 37 30 17

Consumption (V) 12 29 33

Investment (V) 4 2 1

Exports (V) 5 4 4

Employment market sector 61 59 59

GDP (P) 15 35 43

CPI 29 26 29

Exports (P) 1 19 41

Contractual wages 34 51 47

Contributions exports of manufactured goods (volume)

GDP (V) 3 2 2

Consumption (V) 0 1 1

Investment (V) 0 0 0

Exports (V) 34 21 13

Employment market sector 2 3 2

GDP (P) 0 0 0

CPI 0 1 0

Exports (P) 0 0 0

Contractual wages 0 0 1

Contributions exports of manufactured goods (price)

GDP (V) 2 3 8

Consumption (V) 12 6 2

Investment (V) 1 0 0

Exports (V) 7 6 6

Employment market sector 1 0 8

GDP (P) 50 40 15

CPI 31 37 25

Exports (P) 71 62 23

Contractual wages 32 16 5

Contributions investment

GDP (V) 34 41 50

Consumption (V) 10 15 26

Investment (V) 72 79 85

Exports (V) 1 5 12

Employment market sector 12 15 20

GDP (P) 1 3 19

CPI 0 1 15

Exports (P) 4 1 16

Contractual wages 3 10 23

V : Volume

P : Price
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Table A.2 Contributions per initial variable (or system of variables) to the total error variance induced by provi-

sional data uncertainty, continued.

Year 1 Year 2 Year 4

Contributions contractual wages

GDP (V) 3 3 5

Consumption (V) 6 3 2

Investment (V) 2 1 0

Exports (V) 0 0 0

Employment market sector 3 1 0

GDP (P) 17 10 5

CPI 25 21 13

Exports (P) 5 3 4

Contractual wages 16 6 3

Contributions imports of goods

GDP (V) 7 7 7

Consumption (V) 8 10 12

Investment (V) 15 15 13

Exports (V) 52 61 63

Employment market sector 5 6 4

GDP (P) 2 2 7

CPI 1 0 5

Exports (P) 3 2 4

Contractual wages 4 6 10

Contributions GDP (P)

GDP (V) 1 1 2

Consumption (V) 1 0 0

Investment (V) 0 0 0

Exports (V) 0 0 0

Employment market sector 0 0 1

GDP (P) 8 6 2

CPI 9 8 4

Exports (P) 4 5 3

Contractual wages 5 2 1

Contributions GDP and consumption (V)

GDP (V) 14 13 8

Consumption (V) 50 36 24

Investment (V) 6 3 1

Exports (V) 1 2 1

Employment market sector 17 15 6

GDP (P) 7 4 9

CPI 6 4 8

Exports (P) 11 8 10

Contractual wages 5 8 11

V : Volume

P : Price
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Table A.3 Contributions per equation group to the total error variance induced by parameter uncertainty

Year 1 Year 2 Year 4

Contributions exports

GDP (V) 63 52 44

Consumption (V) 3 3 6

Investment (V) 3 6 6

Exports (V) 90 80 76

Employment market sector 1 8 10

GDP (P) 9 4 2

CPI 14 5 2

Exports (P) 17 13 6

Contractual wages 6 3 3

Contributions consumption

GDP (V) 14 13 12

Consumption (V) 90 85 70

Investment (V) 0 1 1

Exports (V) 0 1 0

Employment market sector 0 1 1

GDP (P) 3 3 6

CPI 3 5 6

Exports (P) 1 1 10

Contractual wages 1 1 12

Contributions imports

GDP (V) 4 3 3

Consumption (V) 0 0 0

Investment (V) 0 0 0

Exports (V) 0 0 0

Employment market sector 0 0 1

GDP (P) 1 0 0

CPI 1 1 0

Exports (P) 1 0 0

Contractual wages 0 0 0

Contributions production function (short-term)

GDP (V) 19 29 30

Consumption (V) 2 1 4

Investment (V) 96 93 90

Exports (V) 7 13 5

Employment market sector 95 85 71

GDP (P) 23 14 7

CPI 27 16 7

Exports (P) 35 29 3

Contractual wages 15 8 6

V : Volume

P : Price
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Table A.3 Contributions per equation group to the total error variance induced by parameter uncertainty, con-

tinued.

Year 1 Year 2 Year 4

Contributions wage equation

GDP (V) 0 2 11

Consumption (V) 5 10 20

Investment (V) 0 1 3

Exports (V) 2 6 18

Employment market sector 4 5 17

GDP (P) 64 79 84

CPI 53 73 85

Exports (P) 46 58 80

Contractual wages 79 87 78

V : Volume

P : Price
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Table A.4 Contributions per residual (group) to the total error variance induced by the residual uncertainty

Year 1 Year 2 Year 4

Contributions contractual wages + employment

GDP (V) 6 52 28

Consumption (V) 13 54 75

Investment (V) 18 24 52

Exports (V) 34 75 74

Employment market sector 99 95 96

GDP (P) 33 43 66

CPI 18 30 70

Exports (P) 51 74 80

Contractual wages 73 78 82

Contributions private consumption + exports of services (P)

GDP (V) 2 10 52

Consumption (V) 4 6 8

Investment (V) 5 5 1

Exports (V) 1 1 3

Employment market sector 0 0 1

GDP (P) 63 56 31

CPI 79 69 27

Exports (P) 8 13 15

Contractual wages 23 21 12

Contributions labour supply

GDP (V) 0 0 1

Consumption (V) 0 0 0

Investment (V) 0 0 1

Exports (V) 0 0 3

Employment market sector 0 0 1

GDP (P) 0 0 2

CPI 0 0 2

Exports (P) 0 0 2

Contractual wages 0 1 3

Contributions consumption excluding fixed charges

GDP (V) 6 3 1

Consumption (V) 76 33 10

Investment (V) 1 1 0

Exports (V) 0 0 0

Employment market sector 0 0 0

GDP (P) 0 0 0

CPI 0 0 0

Exports (P) 0 0 0

Contractual wages 0 0 0

V : Volume

P : Price
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Table A.4 Contributions per residual (group) to the total error variance induced by the residual uncertainty,

continued.

Year 1 Year 2 Year 4

Contributions exports of services

GDP (V) 16 6 3

Consumption (V) 1 1 1

Investment (V) 4 4 0

Exports (V) 2 1 0

Employment market sector 0 1 0

GDP (P) 1 0 0

CPI 1 0 0

Exports (P) 1 0 0

Contractual wages 1 0 0

Contributions exports of domestic origin

GDP (V) 15 7 3

Consumption (V) 2 1 2

Investment (V) 5 5 1

Exports (V) 54 16 9

Employment market sector 0 1 1

GDP (P) 1 0 0

CPI 1 0 0

Exports (P) 4 1 0

Contractual wages 1 0 0

Contributions price of exports excluding energy

GDP (V) 1 1 2

Consumption (V) 0 0 0

Investment (V) 0 0 0

Exports (V) 4 4 7

Employment market sector 0 0 0

GDP (P) 1 0 0

CPI 0 0 0

Exports (P) 27 6 1

Contractual wages 0 0 0

Contributions investment of the private sector

GDP (V) 1 1 3

Consumption (V) 0 0 0

Investment (V) 53 48 44

Exports (V) 0 0 2

Employment market sector 0 0 0

GDP (P) 0 0 0

CPI 0 0 0

Exports (P) 0 0 0

Contractual wages 0 0 0

V : Volume

P : Price
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Table A.4 Contributions per residual (group) to the total error variance induced by the residual uncertainty,

continued.

Year 1 Year 2 Year 4

Contributions investment by companies in outillage etc.

GDP (V) 0 0 0

Consumption (V) 0 0 0

Investment (V) 0 0 0

Exports (V) 0 0 0

Employment market sector 0 0 0

GDP (P) 0 0 0

CPI 0 0 0

Exports (P) 0 0 0

Contractual wages 0 0 0

Contributions imports

GDP (V) 53 19 7

Consumption (V) 3 2 3

Investment (V) 13 13 1

Exports (V) 5 3 1

Employment market sector 0 3 1

GDP (P) 1 0 1

CPI 2 0 1

Exports (P) 9 5 1

Contractual wages 2 0 1

Contributions wealth of domestic dwellings

GDP (V) 0 0 0

Consumption (V) 1 3 1

Investment (V) 0 0 0

Exports (V) 0 0 0

Employment market sector 0 0 0

GDP (P) 0 0 0

CPI 0 0 0

Exports (P) 0 0 0

Contractual wages 0 0 0

V : Volume

P : Price
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Appendix B How to generate a sample from the
multinormal distribution?

Our Monte Carlo experiments require several samples generated from a multivariate normal

distribution. Although most programming languages do not facilitate direct sampling from this

distribution, a sample can easily be derived when the language contains a standard normal

univariate number generator. In this box, we demonstrate this approach.

Let Z be a multivariate normal distributed random vector with mean,µ , and covariance

matrix,Ω, Z ∼ N(µ ,Ω). The covariance matrix,Ω, is symmetric and positive definite.

Consequently, the matrixΩ is invertible and can be decomposed using a Cholesky

decomposition. There exists ann×n matrixH such thatΩ−1 = HTH.

We apply this decomposition matrix,H, by formulating the transformation

Z = H−1U+ µ , (B.1)

whereU = (U1, ..,Un)
T denotes a stochastic random vector inRn with independent normally

distributed elements,

Ui ∼ N(0,1). The density of the stochastic vectorU reads,

fU(u) = (2π )−
1
2n exp

(
−1

2
uTu

)
.

Here we used that the elements ofU are independent and identically distributed, and that the

density of a standard normal stochast is defined asfUi (ui) = (2π )−1/2exp(−u2
i /2). We will

demonstrate that the transformation (B.1) yields a random vectorZ which is multivariate normal

distributed with meanµ and covariance matrixΩ.

We recall the following theorem.

Proposition 2. Consider two stochastic vectorsX andY related by the transformation

Y = h(X) . (B.2)

Their densities satisfy

fX(x) = fY (h(x))
∣∣∣∣ ∂ h

∂ X

∣∣∣∣ , (B.3)

where fX and fY are the densities of the stochastic vectorsX andY, and,
∣∣ ∂ h

∂ X

∣∣ is the

determinant of the Jacobian of the transformation (B.2) given by

∂ h
∂ X

=


∂ h1
∂ X1

· · · ∂ h1
∂ Xn

...
...

...
∂ hn
∂ X1

· · · ∂ hn
∂ Xn

 .
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We apply this theorem to the transformation (B.1) by first rewriting this equation to

U = H (Z− µ). For the density of the random vectorZ, we then find

fZ(z) = fU (H (Z− µ)) |H| . (B.4)

Substituting the density functionfU into equation (B.4) gives

fZ(z) = (2π )−
1
2n |H|exp

(
−1

2
(H (Z− µ))T (H (Z− µ))

)
= (2π )−

1
2n |Ω|−

1
2 exp

(
−1

2
(Z− µ)T Ω−1 (Z− µ)

)
. (B.5)

This resulting density indeed resembles the density of a multivariate normal distributed vectorZ

with meanµ and covariance matrixΩ.
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Appendix C Estimation of systems of equations

When estimating a system like (4.10) and (4.11), we regularly rely on a two-step method. First,

we estimate the long-term value lny∗(t) of the endogenous variable lny(t) by regressing lny(t)

on the explanatory variablesxlt(t). This stage results in the approximated equilibrium value

ln ŷ∗ = (Xlt ι) β̂ whereβ̂ =
(

β̂lt
... ĉ

)
with β̂ =

(
(Xlt ι)T (Xlt ι)

)−1
(Xlt ι)T lny, and

η̂(t) = lny(t)− ln ŷ∗(t). ι denotes a vector with every element equal to 1. In the second stage,

we substitutêη(t−1) as a regressor in the short-term equation and estimateβst andε by

regressing ˙y(t) onxst(t) andη̂(t−1). This yields the parameter estimatesβ̂st andε̂ .

A straightforward approach for estimating the covariance matrix associated with the

parameterŝβlt , β̂st andε̂ would be to apply the OLS covariance matrices resulting from the

separate stages in the estimation process.13 Under well-known assumptions, the OLS covariance

matrix estimator is consistent. We rewrite our two-step method in matrix notation, which yields

zlt = Xltβlt +v, (C.1)

zst = Xstβst+ η̂ ε +u, (C.2)

wherezlt = (lny(t1), lny(t2), .., lny(tn))T , zst = (ẏ(t1), ẏ(t2), .., ẏ(tn))T ,

η̂ = (zlt(t1−1)− ẑlt(t1−1), ..,zlt(tn−1)− ẑlt(tn−1))T andu andv are the residual vectors.Xlt

andXst are matrices with rowi, xlt(ti)T andxst(ti)T respectively. Adopting the OLS covariance

matrix estimator for the separate OLS stages as estimators for the covariance matrices ofβ̂lt , β̂st

andε̂ , we find

V̂ar
(

β̂lt

)
= s2

lt

(
XT

lt Xlt
)−1

, (C.3)

V̂ar
(

β̂st, ε̂

)
= s2

st

(
(Xlt η̂)T (Xlt η̂)

)−1
. (C.4)

Unfortunately, these matrices are not consistent. The special character of the two-step

method compromises the consistency of the covariance matrices, as is shown in e.g. Davidson

and MacKinnon (2004) for a regular 2SLS formulation and for more specific examples as ours

in Pagan (1984). Normally, the covariance matrices can be corrected to yield a consistent

estimate, see again Davidson and MacKinnon (2004) and Pagan (1984). In macroeconomic

modelling, consistency of an estimator is important though not decisive. A good fit and plausible

coefficients are more critical.

Besides inconsistency, our system incorporates some additional problems. The endogenous

variables lny andẏ in the first and second stage are differentially related and therefore the

13 Recall that the covariance matrix of a parameter estimate β̂ for a regular OLS estimation of a system, y = Xβ +u, with

y ∈ Rn a vector of n observations, X a nxk-matrix containing k columns corresponding with the k regressors, β a vector

containing the k parameters and u a vector of n residuals, is given by V̂arOLS

(
β̂

)
= s2

(
XTX

)−1
with

s2 = 1
n−k ∑n

t=1 û2
t andû = MXu. We assume that the error-terms are independently and identically distributed with mean

zero and unknown variance σ
2.
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two-step method might not be appropriate to estimate the parameters in equations (4.10)

and (4.11). It can occur that the parameter estimatorsβ̂lt , β̂st andε̂ are inconsistent, as the first

stage does not resolve all endogeneity between the error term and the regressors in the second

stage. Note that, for a regular 2SLS system, consistency of the parameter estimators can easily

be proven under the exogeneity assumption, see e.g. Davidson and MacKinnon (2004).

A second method applied when estimating parameters in systems (4.10) and (4.11) concerns

a simultaneous equation approach. The long- and short- term equation are estimated

simultaneously using non-linear least-squares. We estimate

z = x(βlt ,βst,ε)+u, (C.5)

wherez = (ẏ(t1), .., ẏ(tn))
T , x(βlt ,βst,ε) = (xt1 (βlt ,βst,ε) , ..,xtn (βlt ,βst,ε))T with

xti (βlt ,βst,ε) = xT
st(t1)βst− ε

(
lny(ti −1)−xT

lt βlt −c
)
, andu = (u(t1), ..,u(tn))

T . Assuming that

the error termu is independent and identically distributed with mean zero and unknown variance

σ
2, we can derive a consistent estimator of the covariance matrixβ̂ =

(
β̂lt , β̂st, ε̂

)T
,

V̂ar
(

β̂

)
= s2

(
X̂T X̂

)−1
, (C.6)

where

s2 =
1

n−klt −kst−1

n

∑
t=1

ût
2 =

1
n−klt −kst−1

n

∑
t=1

(
zt −xt(β̂ )

)2
, (C.7)

andX̂ = X(β̂ ), which denotes annxk matrix with rowXt(β ) containing the partial derivatives of

xt(β ) with respect toβ . Again, we can question whether the error termsu and the regressorsx

satisfy the exogeneity assumption. If not, the covariance matrix given in (C.6) is inconsistent.

However, based on similar arguments as before, we apply (C.6) as an estimator of the covariance

matrix of the parameter̂β whenever we use NLS for its estimation.

Finally, we sometimes use three-stage least squares (3SLS). In that case, we focus on

system (C.8) and (C.9),

z∗lt = Xltβlt +v, (C.8)

zst = Xstβst+ηε +u, (C.9)

wherez∗lt = (lny∗(t1), lny∗(t2), .., lny∗(tn))T , and

η = (zlt(t1−1)−z∗lt (t1−1), ..,zlt(tn−1)−z∗lt (tn−1))T andu andv are the residual vectors. This

system differs from (C.1)–(C.2) as the short-term and long- term parameters are investigated

simultaneously as is made explicit by the treatment of the error correction term. This error term

is no longer fully determined before estimating the short-term equation. We assume that the

error termsv andu are correlated and that there might exist both heteroskedasticity and

contemporaneous correlation in the residuals. LetΩ denote the covariance matrix between the

residualsu andv. Furthermore, we assume that the regressors,Xlt , Xst andη might be correlated

with the error termsu andv. Moreover, the exogeneity assumption is not satisfied.
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We first estimate system (C.8)– (C.9) using a 2SLS (generalised instrumental variable) method.

The resulting 2SLS residualŝu andv̂ are subsequently applied to derive an estimate of the

covariance matrix ofu andv. Substitution of this matrix into the efficient GMM estimator of

system (C.8)– (C.9) results in the parameter estimatêβ3SLS=
(

β̂lt 3SLS, β̂st3SLS, ε̂3SLS

)
. For a

thorough description of the 3SLS-technique, we refer to Davidson and MacKinnon (2004).

The catch is in the identification of appropriate instruments for the 2SLS stage. The choice of

a particular instrument is often based on the literature. The covariance matrix of the 3SLS

estimator is consistent and can be used in a description of parameter uncertainty.
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