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Abstract

The COS method for pricing European and Bermudan options with one underlying asset
was developed in [F. Fang, C. W. Oosterlee, 2008] and [F. Fang, C. W. Oosterlee, 2009]. In
this paper, we extend the method to higher dimensions, with a multi-dimensional asset price
process. The algorithm can be applied to, for example, pricing two-color rainbow options,
but also to pricing under the popular Heston stochastic volatility model. For smooth density
functions, the resulting method converges exponentially in the number of terms in the Fourier
cosine series summations, otherwise we achieve algebraic convergence. The use of an FFT
algorithm, for asset prices modelled by Lévy processes, makes the algorithm highly efficient.
We perform extensive numerical experiments.
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rainbow options, basket options, Lévy process, Heston dynamics.
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1 Introduction

In financial markets traders deal in assets and options, like the well-known call and put options.
Besides these, many ‘exotic’ options have been defined, that have more complex contract details
and are not traded at regulated exchanges.

One class of exotic option contracts is called the class of multi-color rainbow options, whose payoff
may depend on multiple assets, like on the average or the maximum of asset prices. The value of
the option depends on the contract details and on the underlying asset prices.

Computational finance deals with numerical and computational questions regarding efficient op-
tion pricing and calibration. Usually, an asset price model is calibrated to liquidly available plain
vanilla options (calls and puts), from a regulated exchange. For the valuation of the exotic options
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other computational methods are typically used. Option pricing techniques can be divided into
the categories of Monte Carlo simulation, partial differential equation (PDE) methods and Fourier-
based methods. Often Monte Carlo methods are used to price high-dimensional option contracts.
The method presented here can be seen as an alternative (deterministic) pricing technique, which
can deal with multi-asset option problems of medium-sized dimensionality, meaning 2D to approx-
imately 5D integrals. The method we propose for pricing higher-dimensional options is based on
the Fourier transform of the transitional density function and is especially suitable for asset price
models in the class of Lévy processes.

In [11], an option pricing method for European options with one underlying asset has been devel-
oped, which is called the COS method. The method is based on the Fourier cosine series expansions
of the discounted expected payoff. The corresponding characteristic function was used to approx-
imate the Fourier coefficients. For smooth density functions, the error converges exponentially in
N , the number of terms in the series expansions. The one-dimensional COS method has been
extended in [12] to pricing Bermudan, barrier, and American options. The use of an FFT algo-
rithm, for asset prices modelled by Lévy processes, makes the algorithm highly efficient, with a
computational complexity of O(N log2 N).

The previous strain of literature on the COS method was based on the one-dimensional character-
istic function of a single stochastic process. In this paper, we extend the Fourier method to higher
dimensions and price in particular two-color rainbow options, which are contracts written on two
underlying assets. Well-known examples include the valuation of basket and call-on-maximum
options. Methods for both European and Bermudan-style rainbow options are developed here.
The resulting algorithm can be applied to models such as correlated geometric Brownian motions
or multi-dimensional processes with jumps. The method is highly efficient for asset prices in the
class of Lévy processes. In the literature, mainly Monte Carlo based methods are being used
to solve higher dimensional pricing problems, see [2], [3], [5], and [6]. Leentvaar and Oosterlee
worked on a parallel Fourier-based method ([21]) and parallel sparse grid methods ( citeLeent-
vaar2008gridstretch) for pricing multi-asset options. The authors in [8] demonstrate an implicit
PDE discretisation method for rainbow options under jump-diffusion processes. We will compare
our results to reference values in the literature mentioned above.

The methodology presented here can also be applied to pricing options with one underlying asset,
for which the dynamics are governed by two or more correlated stochastic processes. For example,
the popular Heston model describes an asset price process with a stochastic volatility ([14]). The
instantaneous variance process follows a mean-reverting square root (CIR) process. This model is
able to capture smile and skew patterns in the implied volatility surface. Besides, the closed-form
univariate characteristic function of the log-asset price process makes it easy to implement the
Heston model in Fourier-based methods, see [1] and [23] for European calls. For the valuation of
Bermudan and discrete barrier options, reference [13] combined the COS formula for the log-asset
dimension and a quadrature rule in the log-variance dimension. Since the bivariate characteristic
function of the log-asset price and variance is available, we can also apply the 2D-COS formula
to this problem. We investigate the two-dimensional COS method particularly for Bermudan put
options under the Heston dynamics.

The outline of this paper is as follows. We start with the presentation of the two-dimensional COS
formula for pricing European rainbow options (Section 2) and the two-dimensional COS method
for solving Bermudan pricing problems (Section 3). Section 4 discusses option pricing under the
Heston model, which is an affine diffusion process, but not in the Lévy class. The error analysis in
Section 5 indicates an exponentially converging error for smooth density functions. A non-smooth
density function results in algebraic convergence. Then, in Sections 6 and 7, numerical tests are
performed. The two-dimensional COS method can easily be extended to higher dimensions and
we give some insights into the possibilities and difficulties in Section 8. Section 9 concludes.
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2 European rainbow options

In this section, we explain the two-dimensional COS formula to approximate discounted expected
payoffs. The method is based on the Fourier cosine series of the payoff function and the density.
The density function of a stochastic process is usually not known, but often its characteristic
function is known (see [9], [11]). This enables us to approximate the Fourier coefficients efficiently.

Let (Ω,F , P ) be a probability space, T > 0 a finite terminal time, and F = (Fs)0≤s≤T a filtration
satisfying the usual conditions. The process Xt = (X1

t , X
2
t ) denotes a two-dimensional stochastic

process on the filtered probability space (Ω,F ,F, P ), representing the log-asset prices. We assume
that the bivariate characteristic function of the stochastic process is known, which is the case, for
example, for affine jump-diffusions ([9]). The value of a European rainbow option, with payoff
function g(.), is given by the risk-neutral option valuation formula

v(t0,x) = e−rΔt
E
t0,x [g(XT )] = e−rΔt

∫∫
R2

g(y)f(y|x)dy. (1)

Here, x = (x1, x2) is the current state, f(y1, y2|x1, x2) is the conditional density function, r is the
risk-free rate, and time to expiration is denoted by Δt := T − t0. In the derivation of the COS
formula, we distinguish three different approximation steps. The errors introduced in each step
are discussed in Section 5.1.

Step 1: We assume that the integrand is integrable, which is common for the problems we deal
with. Because of that, we can, for given x, truncate the infinite integration ranges to some domain
[a1, b1]× [a2, b2] ⊂ R

2 without loosing significant accuracy. This gives the multi-D Fourier cosine
expansion formulation

v1(t0,x) = e−rΔt

∫ b2

a2

∫ b1

a1

g(y)f(y|x)dy1dy2

= e−rΔt

∫ b2

a2

∫ b1

a1

g(y)

+∞∑′

k1=0

+∞∑′

k2=0

Ak1,k2(x) cos
(
k1π

y1−a1

b1−a1

)
cos

(
k2π

y2−a2

b2−a2

)
dy1dy2. (2)

The notation vi is used for the different approximations of v and keeps track of the numerical errors
that set in from each step. For final approximations we also use the “hat”-notation, like v̂, ĉ, etc.
In the second line in (2), the conditional density is replaced by its Fourier cosine expansion in y
on [a1, b1]× [a2, b2], with series coefficients Ak1,k2 defined by

Ak1,k2(x) :=
2

b1−a1

2
b2−a2

∫ b2

a2

∫ b1

a1

f(y|x) cos
(
k1π

y1−a1

b1−a1

)
cos

(
k2π

y2−a2

b2−a2

)
dy1dy2. (3)

∑′ in (2) means that the first term of the summation has half weight. We interchange summation
and integration and define

Vk1,k2(T ) :=
2

b1−a1

2
b2−a2

∫ b2

a2

∫ b1

a1

g(y) cos
(
k1π

y1−a1

b1−a1

)
cos

(
k2π

y2−a2

b2−a2

)
dy1dy2, (4)

which are the Fourier cosine series coefficients of v(T,y) = g(y) on [a1, b1]× [a2, b2].

Step 2: Truncation of the series summations gives

v2(t0,x) =
b1−a1

2
b2−a2

2 e−rΔt

N1−1∑′

k1=0

N2−1∑′

k2=0

Ak1,k2(x)Vk1,k2(T ). (5)
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Step 3: Next, the coefficients Ak1,k2(x) are approximated by

Fk1,k2(x) :=
2

b1−a1

2
b2−a2

∫∫
R2

f(y|x) cos
(
k1π

y1−a1

b1−a1

)
cos

(
k2π

y2−a2

b2−a2

)
dy1dy2. (6)

The two-dimensional COS formula is based on the following goniometric relation ([29]):

2 cos(α) cos(β) = cos(α+ β) + cos(α− β). (7)

With this we obtain
2Fk1,k2(x) = F+

k1,k2
(x) + F−

k1,k2
(x), (8)

where

F±
k1,k2

(x) := 2
b1−a1

2
b2−a2

∫∫
R2

f(y|x) cos
(
k1π

y1−a1

b1−a1
± k2π

y2−a2

b2−a2

)
dy1dy2. (9)

Now, the coefficients F±
k1,k2

(x) can be calculated by

F±
k1,k2

(x)

= 2
b1−a1

2
b2−a2

Re

(∫∫
R2

f(y|x) exp
(
ik1π

y1

b1−a1
± ik2π

y2

b2−a2

)
dy exp

(
−ik1π

a1

b1−a1
∓ ik2π

a2

b2−a2

))

= 2
b1−a1

2
b2−a2

Re
(
ϕ
(

k1π
b1−a1

,± k2π
b2−a2

∣∣∣x) exp
(
−ik1π

a1

b1−a1
∓ ik2π

a2

b2−a2

))
= 2

b1−a1

2
b2−a2

Re
(
ϕlevy

(
k1π

b1−a1
,± k2π

b2−a2

)
exp

(
ik1π

x1−a1

b1−a1
± ik2π

x2−a2

b2−a2

))
. (10)

Re (.) denotes taking the real part of the input argument. ϕ(., .|x) is the bivariate conditional
characteristic function of XT , given Xt0 = x, ([26])

ϕ(u|x) = E

[
eiu·XT

∣∣∣Ft0

]
=

∫∫
R2

eiu·yf(y|x)dy. (11)

Examples of these characteristic functions can be found in Section 6. The last equality in (10)
holds particularly for Lévy processes, for which ϕlevy(u1, u2) := ϕ(u1, u2|0, 0). Inserting (10) in (5)
gives us the 2D-COS formula for approximation of v(t0,x):

v̂(t0,x) :=
b1−a1

2
b2−a2

2 e−rΔt

N1−1∑′

k1=0

N2−1∑′

k2=0

1
2

[
F+
k1,k2

(x) + F−
k1,k2

(x)
]
Vk1,k2(T )

= e−rΔt

N1−1∑′

k1=0

N2−1∑′

k2=0

1

2

[
Re

(
ϕlevy

(
k1π

b1−a1
,+ k2π

b2−a2

)
exp

(
ik1π

x1−a1

b1−a1
+ ik2π

x2−a2

b2−a2

))

+Re
(
ϕlevy

(
k1π

b1−a1
,− k2π

b2−a2

)
exp

(
ik1π

x1−a1

b1−a1
− ik2π

x2−a2

b2−a2

))]
Vk1,k2(T ).

(12)

With the multi-D-COS formula, calculation of the option’s Greeks is straightforward, as explained
for the one-dimensional case in [11].

Remark 1 Cosine terms facilitate the usage of the characteristic function. Fourier sine expan-
sions may also be used, however their coefficients decrease at a lower rate for the payoff functions
discussed and because of that the cosine series are to be preferred. Alternative basis functions,
like certain wavelet basis functions may represent another interesting research direction for option
pricing, but this is not yet known and part of future research.
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If the characteristic function is not available directly or not known analytically, it may be ap-
proximated. Local volatility models, for example, typically do not yield analytic functions ϕ, but
recent research in ([24]) proposes a second-order approximation formula, so that an approximate
characteristic function may be derived.

3 Bermudan rainbow options

We generalize the multi-D-COS method to pricing Bermudan rainbow options with a two-dimensional
underlying log-asset price process, Xt = (X1

t , X
2
t ), that is in the class of Lévy processes. A Bermu-

dan option can be exercised at a fixed set of M early-exercise times t0 < t1 < . . . tm < . . . < tM =
T , with Δt := tm+1− tm. The payoff function is denoted by g(.). The problem is solved backwards
in time, with ⎧⎪⎪⎨

⎪⎪⎩
v(tM,x) = g(x),

c(tm−1,x) = e−rΔt
E
[
v(tm,Xtm)|Xtm−1 = x

]
,

v(tm−1,x) = max[g(x), c(tm−1,x)], 2 ≤ m ≤ M,
v(t0,x0) = c(t0,x0).

Function c(tm−1,x) is called the continuation value and is approximated by the two-dimensional
COS formula,

ĉ(tm−1,x) :=
b1−a1

2
b2−a2

2 e−rΔt

N1−1∑′

k1=0

N2−1∑′

k2=0

1
2

[
F+
k1,k2

(x) + F−
k1,k2

(x)
]
Vk1,k2(tm). (13)

The Fourier coefficients of the value function in (13) are given by

Vk1,k2(tm) := 2
b1−a1

2
b2−a2

∫ b2

a2

∫ b1

a1

v(tm,y) cos
(
k1π

y1−a1

b1−a1

)
cos

(
k2π

y2−a2

b2−a2

)
dy1dy2. (14)

The option function is now approximated by v̂(tm−1,x) := max[g(x), ĉ(tm−1,x)].

3.1 Recursion formula for coefficients Vk1,k2(tm)

In this section, a recursive algorithm to recover the coefficients Vk1,k2(tm), backwards in time, is
derived.

In the coefficients Vk1,k2(tM), the terminal condition v(tM,y) = g(y) appears. Some payoff func-
tions provide analytic solutions to these coefficients in (14), otherwise they can be approximated,
as explained in Section 3.2.1.

For the coefficients that are used to approximate the continuation values at times t0, . . . , tM−2, the
value function, v(tm,y) = max [g(y), c(tm,y)], appears in the terms Vk1,k2(tm) and we need to find
an optimal policy for all state values y ∈ [a1, b1]× [a2, b2]. We divide the domain [a1, b1]× [a2, b2]
into rectangular subdomains Cq and Gp, so that approximately for all states y ∈ Cq it is optimal
to continue and for all y ∈ Gp it is optimal to exercise the option. The concept is demonstrated in
Figure 1 for a call-on-maximum option. The blue rectangles represent the early-exercise regions Gp,
the green ones are the continuation regions Cq, and the dashed line shows an accurate boundary.
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Figure 1: Rectangular regions Cq (green) and Gp (blue).

We can split the integral in the definition of Vk1,k2 into different parts:

Vk1,k2(tm) = 2
b1−a1

2
b2−a2

∑
p

∫∫
Gp

g(y) cos
(
k1π

y1−a1

b1−a1

)
cos

(
k2π

y2−a2

b2−a2

)
dy

+ 2
b1−a1

2
b2−a2

∑
q

∫∫
Cq

c(tm,y) cos
(
k1π

y1−a1

b1−a1

)
cos

(
k2π

y2−a2

b2−a2

)
dy

:=
∑
p

Gk1,k2(Gp) +
∑
q

Ck1,k2(tm, Cq), (m �= 0,M). (15)

We approximate the terms Ck1,k2(tM−1, [zq, zq+1] × [wq , wq+1]) in (15), where the variables zq,
zq+1, wq , and wq+1 denote the corner points of the rectangular continuation region Cq. For the
integrand of the terms Ck1,k2 we apply again the two-dimensional Fourier cosine expansion by
inserting the COS formula for c(tM−1,y), i.e. equation (13). The approximation reads

Ĉk1,k2(tM−1, [zq, zq+1]× [wq, wq+1])

:= 2
b1−a1

2
b2−a2

∫ wq+1

wq

∫ zq+1

zq

ĉ(tM−1,y) cos
(
k1π

y1−a1

b1−a1

)
cos

(
k2π

y2−a2

b2−a2

)
dy1dy2

=

∫ wq+1

wq

∫ zq+1

zq

N1−1∑′

j1=0

N2−1∑′

j2=0

e−rΔt 1
2

[
F+
j1,j2

(y) + F−
j1,j2

(y)
]
Vj1,j2(tM ) cos

(
k1π

y1−a1

b1−a1

)
cos

(
k2π

y2−a2

b2−a2

)
dy1dy2

= Re

⎛
⎝N1−1∑′

j1=0

N2−1∑′

j2=0

1
2e

−rΔtϕlevy

(
j1π

b1−a1
,+ j2π

b2−a2

)
Vj1,j2(tM)M+

k1,j1
(zq, zq+1, a1, b1)M

+
k2,j2

(wq, wq+1, a2, b2)

⎞
⎠

+Re

⎛
⎝N1−1∑′

j1=0

N2−1∑′

j2=0

1
2e

−rΔtϕlevy

(
j1π

b1−a1
,− j2π

b2−a2

)
Vj1,j2(tM)M+

k1,j1
(zq, zq+1, a1, b1)M

−
k2,j2

(wq, wq+1, a2, b2)

⎞
⎠ ,

(16)
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where the elements of square-matrices M+ and M− are given by:

M+
m,n(u1, u2, a, b) :=

2

b − a

∫ u2

u1

einπ
y−a
b−a cos

(
mπ y−a

b−a

)
dy, (17)

M−
m,n(u1, u2, a, b) :=

2

b − a

∫ u2

u1

e−inπ y−a
b−a cos

(
mπ y−a

b−a

)
dy. (18)

We thus find

Ĉk1,k2(tM−1, [zq, zq+1]× [wq, wq+1]) = Re

⎛
⎝N1−1∑′

j1=0

M+
k1,j1

(zq, zq+1, a1, b1)Aq
j1,k2

⎞
⎠ , (19)

where

Aq
j1,k2

:=

N2−1∑′

j2=0

1
2e

−rΔtϕlevy

(
j1π

b1−a1
,+ j2π

b2−a2

)
Vj1,j2(tM)M+

k2,j2
(wq , wq+1, a2, b2)

+

N2−1∑′

j2=0

1
2e

−rΔtϕlevy

(
j1π

b1−a1
,− j2π

b2−a2

)
Vj1,j2(tM)M−

k2,j2
(wq , wq+1, a2, b2). (20)

The elements ofN1×N2-matrixAq are calculated in a row-wise fashion. The row-vectorAq
j1,.

= {Aq
j1,k2

}N2−1
k2=0

can be written as two matrix-vector multiplications

Aq
j1,.

= M+(wq , wq+1, a2, b2)w
q+
j1,.

+M−(wq , wq+1, a2, b2)w
q−
j1,.

, (21)

where

wq±
j1,.

:= {wq±
j1,j2

}N2−1
j2=0 with wq±

j1,j2
:= 1

2e
−rΔtϕlevy

(
j1π

b1−a1
,± j2π

b2−a2

)
Vj1,j2(tM). (22)

Then, the matrix Ĉk1,k2 is computed in a column-wise fashion. The column-vector Ĉ.,k2 = {Ĉk1,k2}N1−1
k1=0

is calculated by one matrix-vector product

Ĉ.,k2(tM−1, [zq, zq+1]× [wq, wq+1]) = Re
(
M+(zq, zq+1, a1, b1)Aq

.,k2

)
, (23)

with column-vector Aq
.,k2

= {Aq
j1,k2

}N1−1
j1=0 .

The coefficients Gk1,k2([zp, zp+1]× [wp, wp+1]) are defined by

Gk1,k2([zp, zp+1]×[wp, wp+1]) =
2

b1−a1

2
b2−a2

∫ wp+1

wp

∫ zp+1

zp

g(y) cos
(
k1π

y1−a1

b1−a1

)
cos

(
k2π

y2−a2

b2−a2

)
dy1dy2.

(24)
These terms may admit an analytic solution, however, in some practical applications an analytic
solution is not present. Methods to approximate these terms are proposed in Section 3.2.2.

We end up with the approximated coefficients

V̂k1,k2(tM−1) :=
∑
p

Gk1,k2(Gp) +
∑
q

Ĉk1,k2(tM−1, Cq). (25)

For the other coefficients Vk1,k2(tm), the approximations ĉ(tm,y) and V̂j1,j2(tm+1) will be used to
approximate the terms Ck1,k2(tm, [zq, zq+1] × [wq, wq+1]), and the elements of the corresponding
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matrix Aq are

Aq
j1,k2

=

N2−1∑′

j2=0

1
2e

−rΔtϕlevy

(
j1π

b1−a1
,+ j2π

b2−a2

)
V̂j1,j2(tm+1)M

+
k2,j2

(wq , wq+1, a2, b2)

+

N2−1∑′

j2=0

1
2e

−rΔtϕlevy

(
j1π

b1−a1
,− j2π

b2−a2

)
V̂j1,j2(tm+1)M

−
k2,j2

(wq , wq+1, a2, b2). (26)

Fast Fourier Transform
The matrix-vector products M+v and M−v in the computation of matrices Aq and Ĉ can be
computed efficiently by a Fourier-based algorithm, as stated in Theorem A.1 (Appendix A). The
computation time achieved is O(N log2 N), with N the length of the vector.

Algorithm
We can recover the terms V̂k1,k2(tm) recursively, starting with Vk1,k2(tM). The algorithm for
solving the pricing problem backwards in time reads:

Algorithm 1 (2D-COS method for pricing Bermudan rainbow options)
Initialisation: Calculate coefficients Vk1,k2(tM).

Main loop to recover V̂ (tm):
For m = M− 1 to 1:

• Determine the optimal continuation regions Cq and early-exercise
regions Gp, as in Figure 1.

• Compute V̂ (tm) from (15) with the help of the FFT algorithm.

Final step: Compute v̂(t0,x0) by inserting V̂k1,k2(t1) into equation
(13).

Computational complexity
The initialisation is of order O(N1N2). In the main loop there are M− 1 iterations in which the
following computations are performed. The construction of one matrix Aq costs O(2N1N2 log2 N2)
operations. Computation of Ĉk1,k2(tm, [zq, zq+1]× [wq, wq+1]) takes O (N2N1 log2 N1) operations.
Gk1,k2([zp, zp+1]× [wp, wp+1]) is of order O(N1N2). The computation time in linear in the number
of continuation and early-exercise regions. The final step takes O(N1N2) operations.

3.2 Approximation methods for the coefficients V (T ) and G(Gp)

In this section, we propose methods to approximate the terminal coefficients Vk1,k2,...,kn(T ) and
the terms Gk1,k2,...,kn(Gp), that are specific for the multi-D-COS method.

In the one-dimensional pricing problem, the terminal coefficients Vk1 (T ) admit analytic solutions
for several options, like put and call-based options, digital, and power options. Besides, in the 1D-
COS method for pricing Bermudan options, also the terms Gk1(Gp) are usually known analytically.

In two dimensions, the payoff functions of, for instance, a geometric basket or a call-on-maximum
option provide analytic solutions to the 2D coefficients Vk1,k2(T ), but this is generally an exception.
If no exact representation is available, then they can be approximated by using discrete Fourier
cosine transforms (DCTs) or also the Clenshaw-Curtis quadrature rule. The usage of DCTs is
explained in Section 3.2.1. Also analytic forms for the terms Gk1,k2,...,kn(Gp) are in general not
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available in the multi-D version. An approximation method, based on Fourier cosine expansion of
the payoff function, is discussed in Section 3.2.2.

3.2.1 Discrete Fourier cosine transforms

In this section, we explain this idea of using DCTs to approximate the terminal coefficients
Vk1,k2(T ). For this, we take Q ≥ max[N1, N2] grid-points for each spatial dimension and define

yni

i := ai + (ni +
1
2 )

bi − ai
Q

and Δyi :=
bi − ai

Q
, i = 1, 2. (27)

The midpoint-rule integration gives us

Vk1,k2(T ) ≈
Q−1∑
n1=0

Q−1∑
n2=0

2
b1−a1

2
b2−a2

g(yn1
1 , yn2

2 ) cos

(
k1π

yn1
1 − a1
b1 − a1

)
cos

(
k2π

yn2
2 − a2
b2 − a2

)
Δy1Δy2

=

Q−1∑
n1=0

Q−1∑
n2=0

g(yn1
1 , yn2

2 ) cos

(
k1π

2n1 + 1

2Q

)
cos

(
k2π

2n2 + 1

2Q

)
2

Q

2

Q
. (28)

The above two-dimensional DCT (Type II) can be calculated efficiently by, for example, MATLAB’s
function dct2. The approximated coefficients are denoted by V DCT

k1,k2
(T ), with the corresponding

computed European option value v̂DCT (t0,x). Now, an extra error is introduced,

εDCT (t0,x) := v̂(t0,x)− v̂DCT (t0,x)

= b1−a1

2
b2−a2

2 e−rΔt

N1−1∑′

k1=0

N2−1∑′

k2=0

Fk1,k2(x)[Vk1,k2(T )− V DCT
k1,k2

(T )]. (29)

This error εDCT converges algebraically in Q, with order two. We will confirm this by an example
in Section 6.1.1. The DCT-method can be extended to higher dimensions, for the approximation
of coefficients Vk1,k2,...,kn(T ).

Remark 2 The above approximation, (28), is based on the midpoint-rule integration. Higher-order
methods or adaptive quadrature rules may improve the efficiency.

3.2.2 Approximation methods for G(Gp)

The terms Gk1,k2 are defined by

Gk1,k2([zp, zp+1]×[wp, wp+1]) =
2

b1−a1

2
b2−a2

∫ wp+1

wp

∫ zp+1

zp

g(y) cos
(
k1π

y1−a1

b1−a1

)
cos

(
k2π

y2−a2

b2−a2

)
dy1dy2.

(30)
These terms may admit an analytic solution, however, in many practical applications the calcu-
lation of coefficients Gk1,k2(Gp) is time-consuming, or an analytic solution is not present. Then,
we can use discrete Fourier transforms to approximate them, similar as in Section 3.2.1. Another
way is the usage of the Fourier cosine expansion of the payoff function. First, we explain this idea
in 1D.

The COS method for one-dimensional Bermudan options was developed in [12]. For a put option
it follows that

Vk1(tm) = Gk1(G) + Ck1(tm, C). (31)
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The coefficients Ck1 are approximated by

Ĉk1(tm, [z1, z2]) = Re

⎛
⎝N1−1∑′

j=0

e−rΔtϕlevy

(
jπ
b−a

)
Vj(tm+1)M

+
k1,j1

(z1, z2, a, b)

⎞
⎠ . (32)

In [12], the coefficients Gk1(z1, z2) are assumed to be known analytically, and

V̂k1(tm) := Gk1(G) + Ĉk1(tm, C). (33)

However, the coefficients Gk1 can also be approximated by a Fourier series expansion of the payoff
function, i.e.

g(x) ≈ ĝ(x) =

N1−1∑′

k1=0

cos
(
kπ x−a

b−a

)
Vk1(T ) =

N1−1∑′

k1=0

Re
(
exp

(
ikπ x−a

b−a

))
Vk1 (T ), (34)

with {Vk1(T )}+∞
k1=0 the terminal coefficients, V (T, y) = g(y). Inserting function ĝ in the terms Gk1

gives

Ĝk1([z1, z2]) :=
2

b−a

∫ z2

z1

ĝ(y) cos
(
kπ y−a

b−a

)
dy = Re

⎛
⎝N1−1∑′

j=0

Vj1(T )M
+
k1,j1

(z1, z2, a, b)

⎞
⎠ . (35)

The computation of Ĉ and Ĝ can now be done simultaneously, as

V̂k1(tm) := Ĝk1 (G) + Ĉk1(tm, C)
= V̂k1 (T )− Ĝk1(C) + Ĉk1 (tm, C)

= V̂k1 (T ) + Re

⎛
⎝N1−1∑′

j=0

[
−Vj1(T ) + e−rΔtϕlevy

(
jπ
b−a

)
Vj1(tm+1)

]
M+

k1,j1
(C, a, b)

⎞
⎠ . (36)

The error of this new approach converges algebraically, as the Fourier series of the payoff function.
The new approach is a little bit faster than (33) (with analytic Gk1(G)), however, a higher value of
N1 is needed to reach the same accuracy, see Table 1 and Figure 2. However, in multiple dimensions
this approach may be beneficial and time-efficient.
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with Gk1
with Ĝk1
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Figure 2: Comparison between method
(33) and (36).

Table 1: Error, reference price is
10.479520123.

N1 method [12], (33) new method, (36)
32 -4.893e-3 -6.22e-2
64 -1.393e-6 1.14e-2

128 -2.023e-10 1.22e-3
256 -2.023e-10 -4.43e-5
512 -2.024e-10 2.52e-6

1024 -2.024e-10 -1.18e-7
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Now we return to equation (30) and explain the approximation method for 2D. The Fourier cosine
expansion of the payoff function can be written as

ĝ(y) :=

N1−1∑′

k1=0

N2−1∑′

k2=0

cos
(
k1π

y1−a1

b1−a1

)
cos

(
k2π

y2−a2

b2−a2

)
Vk1,k2(T )

=

N1−1∑′

k1=0

N2−1∑′

k2=0

1
2

[
Re

(
exp

(
ik1π

y1−a1

b1−a1
+ ik2π

y2−a2

b2−a2

))

+Re
(
exp

(
ik1π

y1−a1

b1−a1
− ik2π

y2−a2

b2−a2

)) ]
Vk1,k2(T ). (37)

With this, the coefficients Gk1,k2 can by approximated by Ĝk1,k2 , similar as in (16),

Ĝk1,k2([zp, zp+1]× [wp, wp+1])

= Re

⎛
⎝N1−1∑′

j1=0

N2−1∑′

j2=0

1
2Vj1,j2(T )M

+
k1,j1

(zp, zp+1, a1, b1)M
+
k2,j2

(wp, wp+1, a2, b2)

⎞
⎠

+Re

⎛
⎝N1−1∑′

j1=0

N2−1∑′

j2=0

1
2Vj1,j2(T )M

+
k1,j1

(zp, zp+1, a1, b1)M
−
k2,j2

(wp, wp+1, a2, b2)

⎞
⎠ . (38)

We will use these approximations in Sections 6.2.1 and 6.2.2. This approximation method can be
extended to higher dimensions; if the multi-D coefficients Gk1,k2,...,kn(Gp) are not known analyti-
cally, then we can use the terminal coefficients Vk1,k2,...,kn(T ) to approximate them.

4 Bermudan options under the Heston model

In this section, we explain the 2D-COS method for a Bermudan pricing problem, in which the
asset prices follows the Heston dynamics. This two-dimensional stochastic process is one of the
important processes in financial option pricing. In [13], Bermudan options under the Heston
stochastic volatility model are priced using the COS formula for the log-asset dimension, combined
with a quadrature rule in the log-variance dimension. For this, the closed-form density function of
the transformed log-variance process is used. In our approach we employ the bivariate characteristic
function of the log-asset price and the variance, which is also available in closed-form, and the 2D-
COS formula can be applied. However, the two-dimensional stochastic process is not in the class
of Lévy processes and efficient matrix-vector multiplication using the FFT algorithm (Appendix
A) within the COS method will therefore be applicable in only one dimension, similar as in [28].

Let process Xt = (X1
t , X

2
t ) = (Xt, νt) represent the Heston model. Xt represents the log-asset

price process and νt is the variance process (ν0 ≥ 0), with dynamics

dXt = (r − 1
2νt)dt+ ρ

√
νtdW

1
t +

√
1− ρ2

√
νtdW

2
t , (39)

dνt = κ(ν̄ − νt)dt+ η
√
νtdW

1
t . (40)

Here, r represents the risk free rate, κ > 0 the mean reversion rate, ν̄ > 0 the long run variance, η >
0 the volatility of variance (vol-of-vol), and ρ the correlation coefficient. Wt is a two-dimensional
Brownian motion on the filtered probability space (Ω,F ,F, P ). The variance process remains
strictly positive if the Feller condition, 2κν̄ ≥ η2, is satisfied, otherwise the boundary at zero is
attainable and strongly reflecting ([17]).
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The process Xt is affine and the bivariate characteristic function is of the form

φ(u,Xt, t, T ) = E[eiu1XT+iu2νT |Xt, νt] = exp
(
B1(T − t,u)Xt +B2(T − t,u)νt +A(T − t,u)

)
.

(41)

We define

β := κ− iρηu1, (42)

D :=
√
β2 + η2u1(i + u1), (43)

h := (β −D − iu2η
2)/(β +D − iu2η

2). (44)

The functions A, B1, and B2 are solutions to a system of ordinary differential equations (ODEs)
of Riccati type ([9]):

∂B1(t,u)

∂t
= 0, (45)

∂B2(t,u)

∂t
= 1

2η
2B2

2(t,u)− βB2(t,u)− 1
2u1(i+ u1), (46)

∂A(t,u)

∂t
= iu1r + κν̄B2(t,u), (47)

with initial conditions B1(0,u) = iu1, B2(0,u) = iu2, A(0,u) = 0. Solving the ODEs gives

B1(t,u) = iu1, (48)

B2(t,u) =
1

η2
β −D − (β +D)he−Dt

1− he−Dt
, (49)

A(t,u) = iu1rt +
κν̄

η2

[
(β −D)t− 2 ln

(he−Dt − 1

h− 1

)]
. (50)

Remark 3 The characteristic function involves a multi-valued complex logarithm, in A(t,u). Most
software packages restrict the logarithm to its principal branch. Then, the characteristic function
can become discontinuous in u, which results in incorrect option prices. The same problem arises
in the one-dimensional characteristic function,

φ1D(u1,Xt, t, T ) = E
[
eiu1XT |Xt, νt

]
. (51)

Solutions to the problem of choosing the correct branch here are discussed extensively in [22, 23,
1, 18]. In [23], the function A(t, u1) (u2 = 0) appears in the expression for the one-dimensional
characteristic function. They prove that the argument of the logarithm never crosses the negative
real axis, so that the principle branch is the correct one. We have not been able to complete the
proof that justifies the use of the principle branch for A(t,u) in 2D. However, experiments showed
that the logarithm’s argument does not cross the real negative real axis for the parameter values in
Section 7.

The variance process can be expressed as a time-changed squared Bessel process with dimension
δ := 4κν̄

η2 , which has an absolutely continuous distribution if δ > 0 (i.e., a density exists) and

a probability mass at the origin if δ = 0 ([19, 10]). The assumptions on the parameters yield
δ > 0, which justifies the use of the analytic density function in equation (1) and approximated
coefficients Fk1,k2 (equation (10)), with characteristic function given by equation (11).

We apply the 2D-COS method to price Bermudan options under the Heston dynamics. We take
again fixed time steps Δt := tm+1 − tm and define

ϕ(u1, u2|x, ν) := φ(u,x, tm, tm+1) := eiu1xeB2(Δt,u)νϕA(u), where ϕA(u) := eA(Δt,u). (52)



2D-COS method for pricing financial options 13

The approximation of the coefficients Ck1,k2 now reads

Ĉk1,k2(tM−1, [zq, zq+1]× [wq, wq+1])

= Re

⎛
⎝N1−1∑′

j1=0

N2−1∑′

j2=0

1
2e

−rΔtϕA

(
j1π

b1−a1
,+ j2π

b2−a2

)
Vj1,j2(tM)M+

k1,j1
(zq, zq+1, a1, b1)H

+
k2,j2

(
wq, wq+1, a2, b2,

j1π
b1−a1

)⎞⎠

+Re

⎛
⎝N1−1∑′

j1=0

N2−1∑′

j2=0

1
2e

−rΔtϕA

(
j1π

b1−a1
,− j2π

b2−a2

)
Vj1,j2(tM)M+

k1,j1
(zq, zq+1, a1, b1)H

−
k2,j2

(
wq, wq+1, a2, b2,

j1π
b1−a1

)⎞⎠ ,

:= Re

⎛
⎝N1−1∑′

j1=0

M+
k1,j1

(zq, zq+1, a1, b1)Aq
j1,k2

⎞
⎠ , (53)

where the elements of matrices H± are given by

H±
k2,j2

(
wq, wq+1, a2, b2,

j1π
b1−a1

)
:= 2

b2−a2

∫ wq+1

wq

e
y2B2

(
Δt,

j1π
b1−a1

,± j2π
b2−a2

)
e±ij2π

−a2
b2−a2 cos

(
k2π

y2−a2

b2−a2

)
dy2.

(54)

As before, the elements of N1 × N2-matrix Aq are calculated in a row-wise fashion and the row-
vector Aq

j1,.
= {Aq

j1,k2
}N2−1
k2=0 can be written as two matrix-vector multiplications

Aq
j1,.

= H+
(
wq, wq+1, a2, b2,

j1π
b1−a1

)
wq+

j1,.
+H−

(
wq, wq+1, a2, b2,

j1π
b1−a1

)
wq−

j1,.
, (55)

where

wq±
j1,.

:= {wq±
j1,j2

}N2−1
j2=0 with wq±

j1,j2
:= 1

2e
−rΔtϕA

(
j1π

b1−a1
,± j2π

b2−a2

)
Vj1,j2(tM). (56)

The above equations are similar to equations (16) and (20) for pricing rainbow options. However,
the matrices H± cannot be decomposed into a Hankel and Toeplitz matrix anymore and the
computation of Aq

j1,.
is therefore of order O(N2

2 ). For the numerical tests in Section 7 we will take

a fixed grid {wq}. Then, the matrices H± need to be computed only once and this computation
is part of the algorithm’s initialisation.

5 Error convergence and computational domain

The method parameters of the 2D-COS method are the integration ranges, [a1, b1] and [a2, b2],
and the number of Fourier cosine terms, N1 and N2. Convergence in the number of cosine terms
is discussed in the error analysis in Section 5.1. Section 5.2 gives some suggestions for the choice
of the computational domain.

5.1 Error analysis

The error analysis is similar to the analyses in [11] and [12]. We start with the local error of the
COS formula. Then, a result for the propagating error is presented.

The local error of the COS formula is defined by

ε(tm−1,x) := c(tm−1,x)− ĉ(tm−1,x). (57)
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Let’s assume that the terms Vk1,k2(tm) are known analytically. Then, errors are introduced in
three steps (see Section 2), the truncation of the integration range, the substitution of the density
by its cosine series expansion on the truncated range, and the substitution of the series coefficients
by the characteristic function approximation. The key to bound the error lies in the decay rate of
the Fourier-cosine series coefficients. We discuss the three errors one after the other:

Step 1: The integration range truncation error:

ε1(tm−1,x) := c(tm−1,x)− c1(tm−1,x) = e−rΔt

∫∫
R2\[a1, b1]×[a2, b2]

v(tm,y)f(y|x)dy. (58)

Step 2: The series truncation error:

ε2(tm−1,x) := c1(tm−1,x)− c2(tm−1,x) =
b1−a1

2
b2−a2

2 e−rΔt
+∞∑
k1,k2

k1≥N1 or k2≥N2

Ak1,k2(x)Vk1,k2(tm).

(59)

The convergence rate of Fourier cosine series depends on the properties of the approximated func-
tions in the expansion interval. The coefficients Ak1,k2 usually decay faster than Vk1,k2 . With
[4, 11], we find that the error converges exponentially in N1 and N2 for density functions in the
class C∞([a1, b1]× [a2, b2]). A density function with discontinuity in one of its derivatives results
in an algebraic convergence of the Fourier cosine series expansion.

Step 3: The error related to approximating Ak1,k2(x) by Fk1,k2(x) (equation (6)):

ε3(tm−1,x) := c2(tm−1,x)− ĉ(tm−1,x)

= b1−a1

2
b2−a2

2 e−rΔt

N1−1∑′

k1=0

N2−1∑′

k2=0

(Ak1,k2(x)− Fk1,k2(x))Vk1,k2(tm)

= −e−rΔt

∫∫
R2\[a1, b1]×[a2, b2]

⎡
⎣N1−1∑′

k1=0

N2−1∑′

k2=0

cos
(
k1π

y1−a1

b1−a1

)
cos

(
k2π

y2−a2

b2−a2

)
Vk1,k2(tm)

⎤
⎦ f(y|x)dy.

(60)

Addition of the three errors gives

ε(tm−1,x) = e−rΔt

∫∫
R2\[a1, b1]×[a2, b2]

[v(tm,y)− v̂(tm,y)] f(y|x)dy

+ e−rΔt

∫∫
[a1, b1]×[a2, b2]

[
v(tm,y)f(y|x) − v̂(tm,y)f̂ (y|x)

]
dy. (61)

Result 1 Let’s assume that the terms Vk1,k2(tm) are exact. If the integration domain [a1, b1] ×
[a2, b2] is chosen sufficiently wide, then the series truncation error ε2 dominates the overall local
error. Then, for smooth density functions the error ε converges exponentially in N1 and N2,
otherwise it goes algebraically. The extra error εDCT , introduced by approximation of the terms
Vk1,k2(T ) with DCTs, has been discussed in Section 3.2.1.

We now discuss the error in the terms Vk1,k2(tm) and define

εk1,k2(tm, Cq) := Ck1,k2(tm, Cq)− Ĉk1,k2(tm, Cq). (62)
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The terms Gk1,k2(Gp) are assumed to be exact, so that the error in the Fourier coefficients is given
by

εk1,k2(tm) := Vk1,k2(tm)− V̂k1,k2(tm) =
∑
q

εk1,k2(tm, Cq). (63)

Result 2 With [a1, b1]× [a2, b2] ⊂ R
2 chosen sufficiently wide and a probability density function f

in C∞([a1, b1]×[a2, b2]), error εk1,k2(tm) converges exponentially in N1 and N2 for 1 ≤ m ≤ M−1.
If the local error converges algebraically, then so does error εk1,k2(tm).

The proof of this result is similar to that for pricing Bermudan options with one underlying asset,
which can be found in [12]. The convergence is algebraically for non-smooth density functions or
if we approximate Gk1,k2(Gp) by an algebraically converging method, see Section 3.2.2.

5.2 Computational domain

The performance of the (2D-)COS method is sensitive to the choice of the computational domain
[a1, b1]× [a2, b2]. If the domain size is set too small, then the resulting option values may be too
low. However, the larger the domain, the more terms in the series expansions are required to reach
a certain accuracy.

For the tests on rainbow options, we will take a1 = a2 = a and b1 = b2 = b, where

a := min
i

[
xi
0 + ξi1 − L

√
ξi2 +

√
ξi4

]
, b := max

i

[
xi
0 + ξi1 + L

√
ξi2 +

√
ξi4

]
, L = 10. (64)

ξij denotes the j-th cumulant of the stochastic variable X i
T . For the cumulants ξ1, ξ2, and ξ4 of the

Brownian motion and the log-jump-diffusion process we refer to [11]. The choice of equal domains
for both dimensions facilitates the calculation of the coefficients Vk1,k2(T ).

For the Heston dynamics, we base the interval [a1, b1] on the cumulants ξj of XT , similar as in
[11],

[a1, b1] :=
[
x0 + ξ1 − L

√
ξ2, x0 + ξ1 + L

√
ξ2

]
, L = 8. (65)

The second cumulant can be approximated by ξ2 ≈ ν̄(1 + η)T . For a2 ≥ 0 and b2, however, we
take a tolerance level TOL = 10−4 and determine the integration range so that

FνT |ν0(a2|ν0) = TOL = 1− FνT |ν0(b2|ν0), (66)

where FνT |ν0 represents the cumulative distribution function of the variance at the terminal time.
This is a general strategy in the case of non-smooth densities.

If N1 and N2 are chosen sufficiently large, then a larger size of the computational domain should
not affect the option price.

6 Numerical experiments rainbow options

In this section we perform several numerical experiments to test the 2D-COS method for pricing
European and Bermudan rainbow options. We will validate the algorithm and show its efficiency.
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The following options are studied: geometric basket, arithmetic basket, put-on-minimum, and call-
on-maximum options. The asset price paths are modelled by either correlated geometric Brownian
motions (GBM) or by Merton’s jump-diffusion processes (but in principle we can use other Lévy
processes). MATLAB 7.11.0 is used for the computations, with an Intel(R) Quad-Core 2.83 GHz
and 8 GB RAM. For the tests in this section, we take an equal number of terms in both series
expansions, that is N2 = N1.

Geometric Brownian motion Under GBM the risk-neutral asset prices evolve according to
the following dynamics

dSi
t = (r − δi)S

i
tdt+ Si

tσidZ
i
t , i = 1, 2, (67)

with correlation dZi
tdZ

j
t = ρijdt, r the risk-free rate, δi the dividend rate, and σi the volatility of

asset i. We switch to the log-processes X i
t := logSi

t ,

dX i
t = (r − δi − 1

2σ
2
i )dt+ σidZ

i
t . (68)

The log-asset prices at time tm, given the values at time tm−1, are bivariate normally distributed,

Xtm ∼ N (Xtm−1 + µ,Σ), (69)

with μi = (r − δi − 1
2σ

2
i )Δt and covariance matrix Σij = σiσjρijΔt. The characteristic function

reads ϕ(u|x) = eix
′uϕlevy(u) with

ϕlevy(u) = exp(iµ′u− 1
2u

′Σu). (70)

Jump-diffusion process Under jump-diffusion the asset prices follow

dSi
t = (r − λκi)S

i
tdt+ Si

tσidZ
i
t + (eJi − 1)Si

tdqt, i = 1, 2, (71)

with κi := E[eJi − 1], qt a Poisson process with mean arrival rate λ, and J = (J1, J2) bivariate
normally distributed jumps, with mean µJ = [μJ

1 , μ
J
2 ]

′ and covariance matrix ΣJ
ij = σJ

i σ
J
j ρ

J
ij . The

log-processes X i
t := logSi

t read

dX i
t = (r − λκi − 1

2σ
2
i )dt+ σidZ

i
t + Jidqt. (72)

The characteristic function reads ϕ(u|x) = eix
′uϕlevy(u) with

ϕlevy(u) = exp
(
iµ′u− 1

2u
′Σu

)
exp

(
λΔt(exp(iµ′Ju− 1

2u
′ΣJu)− 1)

)
, (73)

where μi = (r − λκi − 1
2σ

2
i )Δt and Σij = σiσjρijΔt.

The bivariate density functions of the correlated Brownian motion and jump-diffusion process are
both in C∞, which will result in exponentially converging errors in N1 and N2. Density recovery
using Fourier cosine expansions and the characteristic function gives us

f̂(y|x) :=
N1−1∑′

k1=0

N2−1∑′

k2=0

Fk1,k2(x) cos
(
k1π

y1−a1

b1−a1

)
cos

(
k2π

y2−a2

b2−a2

)
. (74)

The approximated density function of a log-jump-diffusion process is presented in Figure 3.
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Figure 3: Density recovery jump-diffusion process f̂(XT |x0) (Parameter set II).

Parameter sets The following five parameters sets are used for the rainbow options.

Set I:

S0 =
[
90 110

]′
, r = 0.04, δi = 0, σ =

[
0.2 0.3

]
, ρ =

[
1 0.25

0.25 1

]
, t0 = 0, T = 1, K = 100.

Set II:

S0 =
[
90 110

]′
, r = 0.05, σ =

[
0.12 0.15

]
, ρ =

[
1 0.30

0.30 1

]
, t0 = 0, T = 1, K = 100,

λ = 0.60, µJ = [−0.10, 0.10]′, σJ =
[
0.17 0.13

]
, ρJ =

[
1 −0.20

−0.20 1

]
.

Set III:

S0 =
[
40 40

]′
, r = 0.048790, δi = 0, σ =

[
0.2 0.3

]
, ρ =

[
1 0.5
0.5 1

]
, t0 = 0, T = 7/12, K = 40.

Set IV:

S0 =
[
100 100 100

]′
, r = 0.04, δi = 0, σ =

[
0.3 0.35 0.4

]
, ρ =

⎡
⎣ 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

⎤
⎦ , t0 = 0

T = 1, K = 100.

Set V:

r = 0.05, δi = 0.1, σ =
[
0.2 0.2

]
, ρ =

[
1 0
0 1

]
, t0 = 0, T = 3, K = 100.

6.1 European rainbow options

We start in Sections 6.1.1 and 6.1.2 by pricing two types of basket options with two underlying
asset prices, namely,

• geometric basket call options, with payoff g(x) =
(√

ex1
√
ex2 −K

)+
,

• arithmetic basket call options, with payoff g(x) =
(
1
2e

x1 + 1
2e

x2 −K
)+

.

Then, Section 6.1.3 discusses call-on-maximum and put-on-minimum options.
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6.1.1 Geometric basket call option

The price of a geometric basket call option under GBM equals the price of a Black-Scholes call
option with initial option price Ŝ0 =

√
S1
0

√
S2
0 , dividend rate δ̂, and volatility σ̂ ([21]), where

σ̂ =
√
(12 )

2
∑

i,j σiσjρij and δ̂ = 1
2

∑
i(δi +

1
2σ

2
i )− 1

2 σ̂
2. (75)

So, we can compare our results with the analytic option values. The Fourier cosine coefficients of
the payoff function are given by

Vk1,k2(T ) =
2

b1−a1

2
b2−a2

∫ b2

a2

∫ b1

a1

(
√
ey1

√
ey2 −K)+ cos

(
k1π

y1−a1

b1−a1

)
cos

(
k2π

y2−a2

b2−a2

)
dy1dy2.

An analytic solution is available and can be found using, for instance, Maple 14. We use parameter
set I. Besides, we test the method for a deep out-of-the-money option with strike price K = 200.
The option values are v(t0,x0) = 8.8808 (K = 100) and v(t0,x0) = 2.8 × 10−3 (K = 200).
The results in Table 2 and Figure 4 are highly satisfactory and show exponential convergence.
Convergence is reached in milliseconds. For both strike prices, the Fourier coefficients Vk1,k2 are
of the same order-of-magnitude. The last coefficients retained in the series expansion truncation
determine the order-of-magnitude of the truncation error. Because of that, the error results are
similar, however, the relative error is larger for the out-of-the-money option.

Table 2: Results geometric basket call (GBM).

N1(= N2) 10 20 40 80
Error (K = 100) -7.60e-1 -4.07e-2 -1.42e-5 2.34e-13
Error (K = 200) -7.23e-1 -4.06e-2 -1.42e-5 3.08e-13
CPU (ms) 1.65 1.99 3.15 7.46
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Figure 4: Error geometric basket call (K = 100) (GBM).

In Section 6.1.2, we will price arithmetic basket options, for which the terminal coefficients Vk1,k2(T )
need to be approximated by means of two-dimensional discrete Fourier cosine transforms, as ex-
plained in Section 3.2.1. Since there is an analytic solution available for the geometric basket
options, we can analyze the error of the discretization approach for this option. For each spatial
dimension we now take Q ≥ N1 grid-points. So we replace the payoff coefficients by a discrete
approximation.



2D-COS method for pricing financial options 19

Firstly, we analyze the approximate coefficients V DCT
k1,k2

(T ) for the geometric basket option and
calculate the maximum absolute error. This error converges quadratically in Q, see Figure 5.
Secondly, we calculate the errors of the COS formula, see Section 5.1. The computational domain
is chosen sufficiently large, so that we can neglect errors ε1 and ε3, in (58) and (60), respectively.
Results are shown in Table 3 and Figure 6. The left plot shows the series truncation error ε2,
which indeed converges exponentially in N1. The mid-plot confirms the algebraically converging
error εDCT , and the right plot shows the total error ε. If N1 is chosen sufficiently large, then
the error of using discrete Fourier transforms dominates the total error. The computation time of
the coefficients is of order O(Q2 log2 Q) and is the most time-consuming part. The CPU time is
however still less than one second.
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Figure 5: Max. abs. error V DCT
k1,k2

(T ) (k1, k2 = 1, . . . , 80).

Table 3: Results geometric basket call option with payoff coefficients approximated by DCTs.

(a) Abs.error

N1(= N2)
10 20 40 80

Q

250 1.09e+1 7.61e-1 4.18e-2 1.14e-3
500 7.59e-1 4.02e-2 3.91e-4 4.05e-4

1000 7.60e-1 4.06e-2 4.96e-5 6.38e-5
2000 7.60e-1 4.07e-2 1.36e-5 5.75e-7

(b) CPU time (in sec.)

N1(= N2)
10 20 40 80

Q

250 0.007 0.007 0.008 0.014
500 0.04 0.04 0.04 0.06

1000 0.17 0.17 0.17 0.20
2000 0.71 0.71 0.73 0.75

Figure 6: Error geometric basket call option, with payoff coefficients approximated by DCTs.
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6.1.2 Arithmetic basket call option

For arithmetic basket options under geometric Brownian motion, there is no analytic solution to
the option price. Instead, we use the reference option value v(t0,x0) ≈ 10.173230, obtained by
using Q = 5000, N1 = N2 = 100 (Set I). This value is validated by a plain Monte Carlo simulation
with 106 runs, which results in v(t0,x0) ≈ 10.1714 with standard deviation 0.017.

The Fourier cosine coefficients of the payoff function are given by

Vk1,k2(T ) =
2

b1−a1

2
b2−a2

∫ b2

a2

∫ b1

a1

(12e
y1 + 1

2e
y2 −K)+ cos

(
k1π

y1−a1

b1−a1

)
cos

(
k2π

y2−a2

b2−a2

)
dy1dy2. (76)

No analytic representation is available and we approximate the coefficients by using discrete Fourier
cosine transforms. The results in Table 4 are satisfactory and the error converges exponentially in
N1. The CPU times are the same as in Table 3 and convergence is achieved within two seconds.

Table 4: Abs.error arithmetic basket call option.

N1(= N2)
10 20 40 80

Q

250 2.97e0 1.85e-1 2.65e-3 2.70e-3
500 2.98e0 1.91e-1 1.97e-5 2.97e-5

1000 2.98e0 1.91e-1 4.82e-5 1.29e-6
2000 2.98e0 1.91e-1 5.08e-5 1.28e-6

6.1.3 Call-on-max and put-on-min option

In this section, we discuss the following two-color rainbow options,

• call-on-maximum option, with payoff g(x) =
(
max(ex1 , ex2)−K

)+

,

• put-on-minimum option, with payoff g(x) =
(
K −min(ex1 , ex2)

)+

.

The Fourier coefficients of the payoff functions can be calculated analytically. Next, we summarize
the results. For the European call-on-max and put-on-min options under GBM we use parameters
set III ([5]) and compare the results with the analytic solutions from [27]. Figure 7 shows the
results and confirms again exponential convergence.

Next we consider a put-on-minimum option under a jump-diffusion process. Under jump-diffusion
asset price processes, there is no analytic solution to the option values available. We use the model
parameters from set II and set N1 = N2 = 125, for which machine precision is reached. The results
in Table 5 are achieved in a few milliseconds and correspond well to the reference prices in [8].

6.2 Bermudan rainbow options

For pricing Bermudan options we need to determine rectangular continuation and early-exercise
regions. For this, we divide the domain of the second dimension, [a2, b2], into J subintervals,

[a2, b2] = [w0, w1] ∪ [w1, w2] . . . [wq, wq+1] . . . [wJ−1, wJ ]. (77)
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Figure 7: Error put-on-min and call-on-max option.

Table 5: Put-on-min option values v̂(t0,x0) (jump-diffusion).

������S2
0

S1
0 90 100 110

90 15.6916 13.4073 12.1305
100 12.1918 9.1360 7.5175
110 10.3853 6.7274 4.8337

At the center of each subinterval, we determine the value(s) y∗ for which the optimal exercise
policy changes to the optimal continuation, in other words

g(y∗, 1
2 (wq + wq+1)) = c(tm, y∗, 1

2 (wq + wq+1)). (78)

For, for instance, a basket put option, we can then define an early-exercise region Gq = [a1, y
∗]×

[wq, wq+1] and a continuation region Cq = [y∗, b1]× [wq, wq+1]. So, the computational domain is
divided into J early-exercise and continuation regions. In the case of a call-on-max option there
is a multiply connected exercise region, see Figure 1, and for each subinterval [wq, wq+1] we have
one or two early-exercise regions Gq. As long as we select a technique by which we can distinguish
multiple continuation and early-exercise regions from each other, this does not affect the complexity
of the method.

Remark 4 We elaborate on the error in the determination of the early-exercise regions and the
convergence in parameter J . We assume that N1 and N2 are chosen sufficiently large, so that
the approximated option values are sufficiently accurate. Besides, we presume that a root-finding
method is available which is able to accurately determine the value(s) y∗, see (78). For example,
the Newton method with an accurate initial guess suffices. In this setting, the early-exercise re-
gions converge, quadratically in J , to the true regions by means of the rectangle-rule-based method.
However, if we would choose N1, N2 too small, the COS formula may give inaccurate, oscillatory
options values, resulting in inaccurate early-exercise regions and the convergence result only holds
for sufficiently large N1, N2.

For equidistant intervals [wq, wq+1] we take wq = a2 + (b2 − a2)q/J , which gives the exercise
regions Gq shown in Figure 8a. A non-equidistant grid, as in Figure 8b, is based on the quantile
function (the inverse distribution function) of asset price X2

T . We use w0 = a2, wJ = b2, and
wq = F−1

X2
T
(q/J). The large rectangle at the bottom of the domain is not an accurate representation

of the true region. However, it is located near the boundary of the computational domain, outside
the domain of interest, and therefore does not affect the option values in the middle of the domain.
The usage of non-equidistant grids typically leads to more efficient pricing.
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Remark 5 If the quantile function is not known analytically, then we can approximate the random
variable by a normally distributed variable with the same mean (first cumulant) and variance
(second cumulant), for which the quantile function is known.
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(a) Equidistant grid.
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(b) Non-equidistant grid.

Figure 8: Rectangular early-exercise regions Gq (arithmetic basket put).

6.2.1 Geometric basket put option

We start by pricing Bermudan-style geometric basket put options under geometric Brownian mo-
tion. For the tests we use parameter Set I and take M = 10 early-exercise dates. The reference
solution to the put option, v(t0,x) = 6.95904, equals a Bermudan put option in 1D ([3]) and is
computed with the 1D-COS method. The terms Gk1,k2(Gp) admit an analytic solution. The results
are presented in Table 6. Convergence is exponentially in N1 and algebraically in J , with order
two, see Section 5.1. The use of non-equidistant grids improves the convergence significantly. The
computation time is linear in J and the results for, for example, N1 = 80 and J = 160 are obtained
in about 30 seconds.

Table 6: Abs.error Bermudan geometric put basket option.

(a) Equidistant grid.

N1(= N2)
40 80 160

J

20 6.65e-2 7.77e-2 7.79e-2
40 1.22e-2 1.56e-2 1.56e-2
80 1.69e-4 3.54e-3 3.51e-3

160 2.51e-3 8.86e-4 8.56e-4
320 3.15e-3 2.42e-4 2.13e-4

(b) Non-equidistant grid.

N1(= N2)
40 80 160

J

20 7.07e-4 2.23e-3 2.20e-3
40 2.63e-3 5.13e-4 4.83e-4
80 2.97e-3 1.46e-4 1.16e-4

160 3.17e-3 5.85e-5 2.88e-5
320 3.18e-3 3.70e-5 7.17e-6

In Section 6.2.2, we will price Bermudan arithmetic basket options, for which the coefficients
Vk1,k2(T ) are approximated by means of two-dimensional discrete Fourier cosine transforms and

the terms Gk1,k2 are approximated by Ĝk1,k2 , as explained in Section 3.2.2 (with equation (37)).
We examine here the error of this approach by using the Bermudan geometric basket, for which
an accurate reference price is available. We take Q = 2000. Table 7 shows satisfactorily results.
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The results are similar to Table 6, with analytic terms Gk1,k2 . However, for higher values of N1

the usage of analytic terms is more accurate.

Table 7: Abs.error Bermudan geometric put basket option, with Ĝk1,k2 (Q = 2000).

(a) Equidistant grid.

N1(= N2)
40 80 160

J

20 7.05e-02 7.78e-02 7.79e-02
40 1.70e-02 1.58e-02 1.56e-02
80 5.56e-03 3.69e-03 3.54e-03

160 2.96e-03 1.09e-03 9.13e-04
320 2.33e-03 4.66e-04 2.86e-04

(b) Non-equidistant grid.

N1(= N2)
40 80 160

J

20 4.55e-03 2.45e-03 2.25e-03
40 2.69e-03 7.39e-04 5.54e-04
80 2.37e-03 3.74e-04 1.92e-04

160 2.23e-03 2.87e-04 1.06e-04
320 2.21e-03 2.66e-04 8.52e-05

6.2.2 Arithmetic basket put option

For the arithmetic basket option, we take the same model parameters (Set I) as in the previous
section, with M = 10 early-exercise dates. We approximate the Fourier coefficients at the terminal
time by using the discrete Fourier cosine transform and the coefficients Gk1,k2 are approximated

by Ĝk1,k2 . The results in Table 8 show converging option values.

Table 8: Option values Bermudan arithmetic put basket option, with Ĝk1,k2 (Q = 2000).

Non-equidistant grid
N1(= N2)

40 80 160

J

20 6.6086 6.6067 6.6077
40 6.6102 6.6091 6.6102
80 6.6106 6.6096 6.6108

160 6.6109 6.6097 6.6109
320 6.6108 6.6097 6.6109

6.2.3 Call-on-max and put-on-min option

Here, we consider Bermudan call-on-maximum and put-on-minimum options. They are discussed
in, among others, [2], [8], [16], and [15]. The authors in [7] prove properties of the continuation
and early-exercise regions for the American-style option.

The convergence results for a call-on-max option under GBM, Set V with M = 9, are presented in
Table 9a. In Table 9b, option prices for different initial asset values are shown. They correspond
to the values in the third and fourth column, which are obtained in [2].

At last, we price put-on-minimum options under a jump-diffusion process (parameters set II). The
results in Table 10a show converging values. This verifies the applicability of the 2D-COS method
to the broad class of Lévy processes. With increasing the number of early-exercise dates, M, the
option prices converge to the American prices in [8] (Table 10b).

Remark 6 Other rainbow options that can by priced easily and efficiently with the 2D-COS for-
mula are, among others, double binary (digital) cash-or-nothing options, spread options, two asset
correlation options, and exchange options.
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Table 9: Bermudan call-on-max option values v̂(t0,x).

(a) Convergence in N1 and J .

N1(= N2)
40 80 160

J

40 14.2946 13.8919 13.8921
80 14.3032 13.8993 13.8994

160 14.3025 13.9011 13.9013
320 14.3029 13.9015 13.9017
640 14.3037 13.9016 13.9018

(b) Option prices for different initial values (S2
0 = S1

0)
(N1 = 160, J = 320).

S1
0 2D-COS 95% CI ([2]) Binomial ([2])
90 8.0727 [8.053, 8.082] 8.075

100 13.9017 [13.892, 13.934] 13.902
110 21.3437 [21.316, 21.359] 21.345

Table 10: Bermudan put-on-min option values v̂(t0,x) (jump-diffusion).

(a) Convergence in N1 and J (M = 9).

N1(= N2)
40 80 160

J

40 9.5495 9.5570 9.5586
80 9.5597 9.5580 9.5597

160 9.5606 9.5582 9.5599
320 9.5621 9.5584 9.5600
640 9.5632 9.5584 9.5600

(b) Convergence in M
(J = 320, N1 = 160).

M
2 9.3577
4 9.4863
8 9.5526

16 9.5862
32 9.6033

7 Numerical experiments Heston model

In this section, we test the performance of the 2D-COS method for pricing Bermudan put options
under the Heston dynamics. We use three different parameter sets:

Set A : ρ = 0.1, ν0 = 0.0625, ν̄ = 0.16, S0 = 10, K = 10, r = 0.1, η = 0.9, κ = 5, T = 0.25,

Set B : ρ = −0.64, ν0 = 0.0348, ν̄ = 0.0348, S0 = 100, K = 100, r = 0.04, η = 0.9, κ = 1.15, T = 0.25,

Set C : ρ = −0.9, ν0 = 0.04, ν̄ = 0.04, S0 = 100, K = 100, r = 0.04, η = 0.5, κ = 0.5, T = 1.

The Feller condition satisfied is equivalent to 2κν̄/η2 − 1 := qF ≥ 0. For Set A we have qF = 0.98
and the variance process remains strictly positive. For sets B and C we have qF = −0.47 and
qF = −0.84, respectively, and the Feller condition is not satisfied.

Figure 9 shows the approximated bivariate density function f̂(XT , νT |x0, ν0), as obtained by density
recovery, equation (74), for set A.

Figure 9: Bivariate density function (Set A).



2D-COS method for pricing financial options 25

We find

|F±
k1,k2

(x)| ≤ 2
b1−a1

2
b2−a2

∣∣∣ϕ(
k1π

b1−a1
,± k2π

b2−a2

∣∣∣x) ∣∣∣ ∼ O
(
k
−(qF+1)
2

)
, (79)

based on the univariate characteristic function of the variance process. The coefficients Fk1,k2

decrease exponentially in k1 and algebraically in k2 with order qF + 1. For set C this yields
convergence order 0.16 which will result in very slow convergence of the @D COS method in this
case.

7.1 European options with Bermudan framework

To test the algorithm for pricing under the Heston stochastic volatility model, we calculate Euro-
pean option prices with the Bermudan framework, with M = 12 time steps. At every time step tm
we take only a continuation region, C1 = [a1, b1]× [a2, b2], which then corresponds to a European
option and no early-exercise opportunities.

Reference prices are obtained by the 1D-COS method for European options ([11]). The error
results are shown in Table 11. The error converges exponentially in N1 and algebraically in N2, as
expected. Sets A and B give very accurate prices. However, the convergence for Set C is relatively
slow and the obtained values are not highly accurate. The reason for this is the peaked density
function, with coefficients Fk1,k2 only slowly decreasing in k2.

Table 11: Error European option prices.

(a) Set A, v(t0,x) = 0.5015 (qF = 0.98).

N1 N2

50 100 200
50 -1.01e-4 -1.03e-5 1.02e-6

100 -1.07e-4 -1.63e-5 -4.90e-6
200 -1.07e-4 -1.62e-5 -4.86e-6

(b) Set B, v(t0,x) = 3.1325 (qF =
−0.47).

N1 N2

50 100 200
50 3.83e-4 2.05e-4 8.94e-5

100 3.75e-4 1.95e-4 7.90e-5
200 3.75e-4 1.95e-4 7.90e-5

(c) Set C, v(t0 ,x) = 6.2711 (qF = −0.84).

N1 N2

250 500 1000
50 7.8787e-02 4.3008e-02 2.6131e-02

100 6.8267e-02 3.1137e-02 1.3630e-02
200 6.7979e-02 3.0760e-02 1.3220e-02

7.2 Bermudan put options under Heston dynamics

In this section, we consider Bermudan put options with M = 10 early-exercise dates. For the
first test, we select J = 27 continuation and early-exercise regions. The results in Table 12 show
convergence in N1 and N2 and the prices for sets A and B match the results in [13] very well.
Convergence for set C, with qF = −0.84, is somewhat slow because of the slowly decreasing Fourier
coefficients in this case. The quadrature-COS method ([13]) gives the reference value 5.3982.

In a second test we vary the number of continuation and exercise regions. The convergence is
quadratic in J , see Table 13.

The computation times are significantly longer than for the Bermudan rainbow options under Lévy
processes in Section 6.2, because efficient matrix-vector multiplication with the FFT algorithm is
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applicable in only one direction, see Section 4. However, accuracy of four digits can still be obtained
within seconds for set A and set B.

Table 12: Results Bermudan put option (J = 27).

(a) Option values, Set A (qF = 0.98).

N1 N2

40 60 80 100
40 0.517765 0.517869 0.517894 0.517903
60 0.517176 0.517285 0.517311 0.517320
80 0.517021 0.517130 0.517156 0.517165

100 0.517008 0.517116 0.517143 0.517152

(b) Option values, Set B (qF = −0.47).

N1 N2

40 60 80 100
40 3.20083 3.20077 3.20071 3.20066
60 3.19909 3.19903 3.19897 3.19893
80 3.19912 3.19907 3.19901 3.19897

100 3.19910 3.19905 3.19899 3.19894

(c) Option values, Set C (qF = −0.84).

N1 N2

40 60 80 100
40 5.70464 5.57416 5.50068 5.45386
60 5.77720 5.67101 5.61174 5.57399
80 5.75689 5.64811 5.58898 5.55195

100 5.75808 5.64673 5.58552 5.54697

(d) CPU time (s).

N1 N2

40 60 80 100
40 6.7 10.5 14.8 22.8
60 8.8 14.0 20.2 31.2
80 11.2 17.9 25.8 42.9

100 13.5 21.4 31.2 51.2

Table 13: Bermudan option values v̂(t0,x), convergence in J (N1 = 100, N2 = 100).

log2 J 3 4 5 6 7
Set A 0.515991 0.516784 0.517060 0.517133 0.517152
Set B 3.186917 3.196282 3.198380 3.198837 3.198944
Set C 5.42431 5.51038 5.53874 5.54523 5.54697
CPU time (s) 3.4 6.3 12.4 25.1 51.2

8 Higher-dimensional COS method

The 2D-COS formula can be generalized to higher dimensions easily. In this section we elaborate
on the possibilities and difficulties of the higher-dimensional COS method. In Section 8.1, we
demonstrate an example with three underlying assets.

Suppose we have an n-dimensional asset prices process, with N1 = N2 = . . . = Nn = N terms
in the series summations. Then, with the methodology described in Section 3, the computational
complexity of pricing a Bermudan option is O(2nNn log2 N). It is clear that we cannot choose n too
large, as then the curse of dimensionality sets in. Besides, the data storage grows exponentially
in n. For example, in seven dimensions, with N = 100, the storage of the Fourier coefficients
V (tm) requires 8 · 105 GB memory. Dimensions n ∈ {2, . . . , 5} should however still be fine. For
higher dimensions, efficient aggregation of states or sparse grid methods are needed. However,
most existing methods for a dimensionality of ten and higher are based on Monte Carlo methods.

For pricing Bermudan options we need to determine n-dimensional continuation and early-exercise
boxes. In three-dimensional space, we get rectangular cuboids. For four or higher dimensions it
gets harder to visualize the regions. Special algorithms to determine the regions efficiently, or even
adaptively, may be helpful.

The terminal coefficients Vk1,k2,...,kn(T ) can be approximated by using discrete Fourier cosine trans-
forms, see Section 3.2.2. Computation or approximation of the multi-D coefficients Gk1,k2,...,kn(Gp)
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can be time-consuming or no analytic expression may be available, but we can use the terminal
coefficients to approximate them. This approach was explained in Section 3.2.2.

8.1 3D-COS formula

The three-dimensional version of the COS formula reads

v̂(t0,x) :=

3∏
i=1

bi−ai

2 e−rΔt

N1−1∑′

k1=0

N2−1∑′

k2=0

N3−1∑′

k3=0

1
4

[
F++
k1,k2,k3

(x) + F+−
k1,k2,k3

(x) + F−+
k1,k2,k3

(x) + F−−
k1,k2,k3

(x)
]
Vk1,k2,k3(T ).

(80)

The coefficients F±±
k1,k2,k3

are given by

F±±
k1,k2,k3

(x) =

3∏
i=1

2
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Re
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b2−a2

,± k3π
b3−a3

∣∣∣x) exp
(
− ik1π

a1

b1−a1
∓ ik2π

a2

b2−a2
∓ ik3π

a3

b3−a3

))

=
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x3−a3
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(81)

where the last equality holds for Lévy processes, with ϕlevy(u1, u2, u3) := ϕ(u1, u2, u3|0, 0, 0).
We test the 3D-COS formula by pricing European basket call options, with parameter set IV. The
results in [20] are used as reference prices. For the coefficients Vk1,k2,k3(T ) we use discrete Fourier
cosine transformations to approximate them. The results are presented in Table 14. They show
that the multi-dimensional-COS formula is very accurate. The CPU time for N1 = 40 and Q = 200
is less than two seconds.

Table 14: Abs.error geometric basket call option, v(t0,x0) = 11.9791, and arithmetic basket call
option, v(t0,x0) = 13.2449 (N1 = N2 = N3).

Geometric basket Arithmetic basket
������Q

N1 10 20 40 80 10 20 40 80

50 1.78 3.12e-2 4.03e-3 n/a 2.11e+1 4.59e-1 6.94e-3 n/a
100 1.79 4.53e-2 7.92e-3 7.91e-3 2.14e+1 4.80e-1 9.82e-5 7.82e-5
200 1.81 3.68e-2 9.88e-4 9.89e-4 2.15e+1 4.86e-1 <5.0e-5 2.13e-5
400 1.81 3.77e-2 2.46e-4 2.47e-4 2.15e+1 4.87e-1 <5.0e-5 <5.0e-5

9 Conclusion

The one-dimensional COS method for pricing European and Bermudan options was developed in
[11] and [12]. The method is based on Fourier cosine expansions and the series coefficients of the
value function are recovered backwards in time. In this paper we presented the generalisation of
the COS method to higher dimensions. The recursive algorithm can be applied to, for example,
pricing rainbow options, but also to pricing under the Heston stochastic volatility model.
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The 2D-COS method for valuation of Bermudan options is based on the dynamic programming
principle and two-dimensional Fourier cosine series expansions. For smooth density functions, the
resulting method converges exponentially in N1 and N2, the number of terms in the series sum-
mations. Otherwise we achieve algebraic convergence, as in the 1D case. For multi-dimensional
stochastic processes in the class of Lévy processes, we can apply efficient matrix-vector multiplica-
tion using the FFT algorithm. The Heston model is not in the Lévy class and the FFT algorithm
will be applicable in only one dimension.

We performed extensive numerical experiments with European and Bermudan options. The algo-
rithm for pricing two-color rainbow options can be used for various payoffs and performs highly
satisfactorily. The asset prices in the tests are modelled by geometric Brownian motions or corre-
lated jump-diffusions, but the method can be applied to a broad class of multi-dimensional asset
price processes for which the characteristic function is available.

The density function of the Heston dynamics may be non-smooth, especially near zero variance if
the Feller condition is not satisfied, and peaked densities give rise to slow algebraic convergence.
However, for a wide range of parameter values, the 2D-COS method achieves accurate Bermudan
put prices.

Acknowledgment The authors wish to thank Prof.dr. F.H.J. Redig and dr. J.A.M. van der
Weide for helpful suggestions and discussions.

Appendix

A Fast Fourier Transform (FFT) algorithm

Theorem A.1 (Efficient computation of Ĉ and Aq)
The matrix-vector product M+(u1, u2, a, b)v and M−(u1, u2, a, b)v, can be computed in O(N log2 N)
operations with the help of the Fast Fourier Transform (FFT) algorithm, with N the size of square-
matrices M+ and M−.

The key insight of this efficient computation are the equalities

M+
k,j(z1, z2, a, b) = − i

π

(
M+c

k,j(z1, z2, a, b) +M+s
k,j (z1, z2, a, b)

)
, (82)

M−
k,j(z1, z2, a, b) = − i

π

(
M−c

k,j (z1, z2, a, b) +M−s
k,j (z1, z2, a, b)

)
, (83)

where

M±c
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exp
(
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b−a

)
− exp

(
i(±j + k) (z1−a)π
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)
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, (84)

M±s
k,j (z1, z2, a, b) =

exp
(
i(±j − k) (z2−a)π

b−a

)
− exp

(
i(±j − k) (z1−a)π

b−a

)
±j − k

, (85)
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with special cases

M+c
k,j(z1, z2, a, b) =

(z2 − z1)πi

b− a
, for k = j = 0, (86)

M−s
k,j (z1, z2, a, b) =

(z2 − z1)πi

b− a
, for k = j = 0, (87)

M−c
k,j (z1, z2, a, b) =

(z2 − z1)πi

b− a
, for k = j, (88)

M+s
k,j (z1, z2, a, b) =

(z2 − z1)πi

b− a
, for k = j. (89)

The matrices M+c and M−s are Hankel matrices and M+s and M−c are Toeplitz matrices. These
special structures make the calculation of the matrix-vector products efficient using FFT algo-
rithms, as described in [12] and [4].
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