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Abstract

In this paper, we explore how machine learning can improve macroeconomic forecasting for the
Netherlands, a small open economy with fewer observations compared to, e.g., the United States. We
introduce the NL-MD, a novel dataset featuring key macroeconomic indicators for the Netherlands,
similar to existing datasets like the FRED-MD. Following the approach of [Goulet Coulombe et al.
(2022) on the FRED-MD, we examine how the machine learning features of data richness (i.e., a
large number of variables), non-linearities, cross-validation, and shrinkage improve predictions for the
Netherlands. Out-of-sample experiments across four horizons and seven variables lead to the following
main takeaways: First, the relative performance of machine learning features varies notably depending
on the specific variable. Second, although the best model for a variable-horizon combination is often
data rich, the average data rich model does not perform significantly better than the average data poor
model, likely due to the lack of observations in this experiment. Third, on average, non-linear models
do not perform significantly better than traditional econometric models. However, when considering
only the data rich setting, non-linear models significantly improve predictive performance, indicating
that non-linear models are relatively efficient at handling a large number of features. Our main
conclusion is that in a limited data environment, careful tuning of models is essential, as the optimal
combination of machine learning features can be highly specific to the variable under prediction.
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1 Introduction

Every month, tremendous amounts of data are released by statistical agencies and private institutions all
over the world. Using various econometric models, forecasters can extract information from this data to
make forecasts that inform policymakers at governments or central banks. In recent decades, this surge in
data has sparked an interest in combining traditional macro-econometric methods with machine learning
to distill as much information as possible from the data. However, in contrast with microeconomicsﬂ
the data environment of macroeconomics is relatively scarce, having limited observations per observable.
Despite this, macro-forecasters have successfully applied and tailored (machine learning) methods to this

challenging setting, equipping the forecaster with a large arsenal of methods (see e.g., Bok et al| (2018),
Bolhuis and Rayner| (2020)).

There has been extensive research on the topic of macro-forecasting and machine learning (see e.g.,

Bolhuis and Rayner| (2020), |Chu and Qureshil (2023), [Hall et al.| (2018)). Determining the most effective

methods for specific datasets often relies on empirical work, leading to a large literature of studying and

comparing specific statistical models on various datasets, often in the form of horse race papers (see e.g.

Ahmed et al. (2010)), |Giannone et al. (2021)), |Granziera and Sekhposyan| (2019), Kotchoni et al| (2019),

[Lee et al| (1993), Medeiros et al| (2021)), [Stock and Watson| (1998 [2012))). However, with the ever-

increasing number of statistical models available, the task of comparing each individual model quickly

becomes a daunting and overwhelming task. In this light, Goulet Coulombe et al| (2022)) abstracts away

from individual models and instead focuses on the features that lead to better predictive accuracy by

performing a meta-analysis on a large space of models evaluated on a large dataset, thereby trying to

answer how machine learning can improve macroeconomic forecasting. Specifically, (Goulet Coulombe|

(2022) consider an experiment where four features are given as ‘treatments’ to a reference model.
They consider the following features: non-linearities, cross-validation, shrinkage, and the loss function,
while controlling for the big data aspect. They find convincing evidence that the predictive power of the

best-performing models is well explained by their non-linearity feature.

In this work, we follow the approach by |Goulet Coulombe et al|(2022)) and apply their methodology to a

novel, large dataset containing the most important indicators of the Dutch economy, the NL-MD. Similar

datasets already exist for the United Kingdom (Coulombe et al., 2021b)), the United States (McCracken

2016), and Canada (Fortin-Gagnon et al., 2022), and these datasets have made reproducible

macroeconomic research more accessible. The NL-MD consists of data on 168 variables, with data taken

from Statistics Netherlands, the European Central Bank, and Yahoo Finance. The NL-MD is not a

1For a review of machine learning methods applied in microeconomics, see |Athey and Imbensl q2019[).




balanced dataset, with most data available between 2010 and 2023. Compared to the United Kingdom
and the United States, we only have a limited number of observations available for the Netherlands.
Additionally, the Dutch economy stands apart from larger economies like the United Kingdom and the
United States due to its relatively small and open natureﬂ As a consequence, results obtained from
those economies do not necessarily generalize. Academically, exploring the circumstances under which
the results do generalize becomes crucial, as it provides further insights into the usefulness of machine
learning for macroeconomic forecasting. Moreover, this study holds significant policy relevance, as it

provides Dutch forecasters with valuable insights into the most promising methods worth pursuing.

While much of the macroeconomic forecasting literature is predominantly centered around English-
speaking countries, particularly the United States, there has been a growing literature around smaller
economies and the euro area. For example, [Jansen et al.| (2016) and [Hindrayanto et al.| (2016) compare
several statistical models on data from several European countries (including the Netherlands) and find
that factor models consistently perform well. [Kant et al.| (2022) forecast Dutch GDP in a horserace
containing several machine learning models, finding that a random forest performs best. A similar result
was found by |Gogas et al.| (2022) by forecasting unemployment in the euro area. Looking beyond the
euro area, Maehashi and Shintani| (2020) applied several machine learning and factor models to Japanese
macroeconomic data, finding similar conclusions as |Goulet Coulombe et al.| (2022). Lastly, Richardson
et al| (2018)) conducted a similar exercise using data from New Zealand, corroborating the previous
results that machine learning forecasts perform consistently better. While these studies provide valuable
insights, they are often tailored to specific machine learning models. Consequently, it becomes challenging
to discern the precise contributions of different components within the machine learning framework to

overall performance. This is a question we try to address in our paper.

To draw conclusions from our dataset, we follow the approach of |Goulet Coulombe et al.| (2022)) closely.
We choose seven dependent variables for which we make forecasts: the AEX index, CPI, deposit interest
rate, value index of exports, production index of industry, number of sold existing homes, and the
unemployment rate. These seven variables together represent key facets of the Dutch economy. In
our work, we study four machine learning features: data richness, non-linearities, cross-validation, and
shrinkage. For data richness, we compare a data poor environment (independent variables are only lags
of the dependent variables) to a data rich environment (independent variables also include other NL-MD
variables). For non-linearities, we compare traditional linear (factor) models to kernel ridge regression
and a random forest. For cross-validation, we compare a k-fold cross-validation approach, which does not

account for the time structure of the data, to a pseudo-out-of-sample cross-validation approach, which

2The open nature of the Dutch economy is reflected in the NL-MD by the inclusion of many trade variables. However,
due to a lack of data availability, there are not necessarily many foreign variables in the data.



does take this into account. For shrinkage, we compare standard factor models to ElasticNet, Lasso,
and Ridge regressions. In total, we consider 42 models that differ in terms of the four features. Using
these models and variables, we run pseudo-out-of-sample forecast experiments using four different forecast
horizons (1, 3,6, 12 months ahead) on a test period from 2015MO01 until 2023M12. As the starting points
of all variables in the NL-MD are not the same, the starting points of the seven dependent variables also
differ: the starting points of the training period range between 1998M01 and 2010MO01. Conclusions are

drawn by running regressions of a dummy variable for the feature on the out-of-sample R2.

Our conclusions are as follows: 1) The relative performance of machine learning features is quite variable-
dependent. Therefore, finding general conclusions that consistently hold true is challenging. 2) While
the best model for a given variable-horizon combination is often a data rich model, the average data
rich model does not perform significantly better than the average data poor model; this is likely due
to the lack of observations in the dataset. 3) There is no significant negative effect from using k-fold
cross-validation compared to POOS cross-validation. 4) Averaged over all variables, non-linearities do
not perform significantly better compared to linear models. Nevertheless, when only considering data
rich models, the treatment effect of non-linear models is significant and positive, indicating that non-
linear models can efficiently deal with a large amount of features. 5) On average, shrinkage methods do
not perform significantly better than traditional factor models. However, for several variables, they can
improve predictions significantly. Especially when combined with a PCA-rotated dataset. Taking all of
this into account, our main conclusion is that in environments with limited data, careful tuning of models
is essential, as the optimal combination of machine learning features is quite specific to the variable being

predicted.

Our contribution to the literature is twofold. First, we have developed the NL-MD. This macroeconomic
dataset consists of the main macroeconomic indicators of the Netherlands and makes research on the
Dutch economy more easily available and reproducible. Additionally, the NL-MD complements existing
datasets for the United Kingdom (Coulombe et al. [2021b), the United States (McCracken and Ngj
2016)), and Canada (Fortin-Gagnon et al. 2022). Although the NL-MD will not be released monthly at
this time, the specific data used for this study (vintage February 28, 2024) will be made available.
Second, we replicate the work of |Goulet Coulombe et al| (2022) for a completely different dataset.
Whereas |Goulet Coulombe et al.| (2022) focuses on the United States, we focus on the Netherlands.
Compared to the United States, the Dutch dataset is not balanced and consists of far fewer observations
(Goulet Coulombe et al.| (2022)) have training data going back to 1970, whereas we have training data
going back at most to 1998). Our study reveals that the findings from |Goulet Coulombe et al.[(2022) do

not necessarily generalize to different environments. While |Goulet Coulombe et al.| (2022) conclude that a



data rich environment enhances forecasting performance, our results indicate that this may not hold true
when the number of training observations is limited. Thus, we refine the conclusions of |(Goulet Coulombe
et al| (2022) by demonstrating that their results vary with different datasets. Third, we extend their

work by incorporating an alternative data selection method based on the variance inflation factor (VIF).

This paper is organized as follows: in Section [2] we describe our novel dataset. Then, in Section [3] we
introduce our predictive modelling setup. Section [4] introduces the specific features of machine learning
and the models we use to produce forecasts. Section [5]discusses the out-of-sample experiment we conduct.

The results are then presented in Section [6] Finally, Section [7] concludes.

2 Data

To ensure that our arsenal of machine learning models performs optimally, we require a large dataset for
training. For this purpose, we use the NL-MD: a newly constructed dataset. We pre-process this dataset
to construct six distinct feature matrices. This section first describes the NL-MD, and the variables we

will predict.

2.1 Dataset

In recent years, several standardised monthly datasets with a wide range of macroeconomic indicators
have become available. For example, the FRED-MD for the United States (McCracken and Ngj 2016), the
CAN-MD for Canada (Fortin-Gagnon et al., 2022)), and the UK-MD for the United Kingdom (Coulombe
et al.,[2021b). As these datasets are publicly available and regularly updated (with a new vintage of data
published every month), they make research on the macroeconomy more accessible and reproducible. We
follow in this line by constructing the NL-MD: a large monthly dataset describing the most important
facets of the Dutch macroeconomy. In contrast to the other datasets, at this point we do not publish
and update the NL-MD each month. However, the specific vintage of our dataset will be available on

GitHubIﬂ In this research, quasi-real-time data with a vintage date of February 28, 2024, is used.

For the composition of variables in the NL-MD, we largely follow the composition of the FRED-MD, CAN-
MD, and UK-MD. We supplemented this selection with additional variables based on expert input. The
data in the NL-MD originates from three different sources: Statistics Netherlands’ database StatLine,

the Statistical Data Warehouse of the European Central Bank, and Yahoo FinanceEI Therefore, the

Shttps://github.com/CPB-data-science/NLMD
4StatLine: https://opendata.cbs.nl/statline} Statistical Data Warehouse: https://data.ecb.europa.eu/; Yahoo
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composition of the NL-MD also depends on the data availability from these three sources.

In total, the NL-MD consists of 168 variables. The variables in the NL-MD can be divided in seven
categories. Table [I] shows for each category the source of the variables and its size. Appendix [A] gives an

overview of all the variables in the NL-MD.

Just like in the FRED-MD, CAN-MD, and UK-MD, we determine a transformation code for each variable
in the NL-MD (these codes can be found in Appendix . The transformation ensures that the dataset
used is stationary. To determine the transformation code for a variable, we followed these steps. First,
if all elements of a series are positive, we take its logarithm. Second, we perform an Augmented Dickey-
Fuller test (Dickey and Fuller [1979) on the series. If the series is stationary at the 5 percent level, the
data is not transformed. Otherwise, the first- and second-differences of the series are calculated, and the
Augmented Dickey-Fuller test is applied again. The first series to exhibit stationarity is adopted. Before

making forecasts on the data, the data is scaled to have a mean of zero and unit variance.

As can be seen in Figure the NL-MD is not a balanced dataset. Several variables start later than the
first variable. When the latest starting period is used, the dataset contains more than 150 variables, as
can be seen in Figure However, in our analysis we always start at an earlier date, as this provides
more observations. In our analysis we prioritize observations over variables, as we already have a limited
training period. This trade-off is made clear by considering Figure As a consequence, we never use

more than about 100 variables in our analysis.

2.2 Variables of interest

We analyze seven key indicators of the Dutch economy, each one corresponding to one of the seven
categories spanning the NL-MD. This spans the full breadth of the Dutch economy, thereby giving us a

broad overview of the possible applications of machine learning to macro-forecasting. These indicators

Finance: https://finance.yahoo.com/.

Table 1: Short description of the NL-MD dataset. CBS refers to Statistics Netherlands, ECB refers to
European Central Bank and Yahoo refers to Yahoo Finance.

Category: Data source: Number of variables:
housing market CBS 18

indices and indicators CBS 68

interest and exchange rates ECB 12

international trade CBS 38

labor market CBS 9

production CBS 9

stock market Yahoo 14


https://finance.yahoo.com/
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Figure 1: The two figures describe the vintage (2024-02-28) of the NL-MD that is used in this research.
In the upper panel, we show for each variable in the NL-MD the time span, i.e., the periods for which
we have data on each variable. The different colours correspond to the seven different categories in the
NL-MD. In the lower panel, we show for each period how many variables we have data on when we
construct a dataset that ends at 2023M12. The vertical lines in the lower panel indicate the points in
time from which data for the variables of interest becomes available. The colours used in the lower panel
correspond to those used in the upper panel.



exhibit varying behaviours, which could impact forecasting performance. Where possible, we use the
same variables in this research on Dutch data as|Goulet Coulombe et al.| (2022)) used in his research on
data from the United States. Specifically, we focus on the AEX, CPI, deposit interest rate, export (value
index), industry (production index), number of sold existing homes and unemployment rate variablesﬂ
The series are shown in Figure 2] We note that some of these series have seasonal trends, for example

number of sold existing homes. However, we do not explicitly account for this in this study.

The variables under prediction, and the start of the training period corresponding to them, are shown
in Table The start of the training period is two years after their minimal period in the data (this
point can be seen in Figure . This is needed to be able to include lags up to 12 periods, and predict
12 periods forward. Besides, Table 2] shows for each variable which transformation is used when making

predictions.

Table 2: The variables under prediction with their start training period and transformation.

Category: Data source: Start training period: Transformation:
housing market number of sold existing homes  1998M01 first-difference log
indices and indicators CPI 1991M01 first-difference log
interest and exchange rates deposit interest rate 2002M01 first-difference level
international trade export (value index) 1998M01 first-difference log
labor market unemployment rate 2006MO01 first-difference log
production industry (production index) 2008M01 first-difference log
stock market AEX 2010M01 first-difference log

3 Forecasting setup

Machine learning offers a flexible way of predictive modelling. This can be understood from our modelling
framework. Following |Goulet Coulombe et al.| (2022), we predict a (scaled and transformed) target

variable y; over a horizon h by estimating the following equation:
Yern = Gn(Ze,T) + Etgn (1)

Here, gp,(.) is a possibly very flexible function of the feature matrix Z; = fz(H;) and the hyperparameters
7. Its specific parameters will be estimated using either ordinary or regularised least squares. H; is the
original data matrix that is transformed by the function fz. The specific feature matrices and how
these are obtained from our initial dataset are discussed in Section In this work, we will consider

predictions over a horizon of 1, 3, 6 and 12 months.

5 Arguably, the AMX would be more reflective of the Dutch economy than the AEX, as the AEX mostly consists of large
multinationals. However, the AEX data is available for a significantly longer period. For the period both variables are
available, we find that they are correlated with a correlation coefficient of 0.9551. Therefore, we choose to include the AEX
series.
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Figure 2: Seven variables that are used as dependent variables in the main analysis.



We define Y; as the level of the target variable. Analogous to |Goulet Coulombe et al. (2022)), if Y; is
strictly positive, we take its log. To make sure all series are stationairy, we take its first difference.
This means we forecast either the differences or growth rate of a series. We test whether our series are
stationary using an Augmented Dicky-Fuller test (Dickey and Fuller| 1979)E| Specifically, we predict the

average growth rate or difference over a horizon h. This leads to two possible specifications for y;ip:

1 log Yt if Y, >0,

Ytrh = (2)
F (Yepn —Yy) ifY; <0.

Note that this differs from the path average approach for h > 1, where forecasts are made separately for
each step up to the horizon. The reason we adopt the direct approach is mainly due to computational
reasons. While the two methods are equivalent for OLS-based techniques, [Coulombe et al.| (2021a)) found
evidence that the path average approach performs better when regularization (such as ridge regression)
and non-linearities are involved. Finally, we scale our target to have mean zero and unit variance. After
estimating Equation [I} we convert the forecasted variable in differences, .y, back to the original levels,

resulting in a forecast denoted as YHh.

One of the strengths of the machine learning framework lies in the flexibility of the function gx(.) in
Equation [1}, allowing for a reduction in the ‘true model’ approximation error. However, using a flexible
function also risks overfitting, which needs to be kept in check by suitable regularization. We can gain

some intuition about the forecasting error by decomposing it into three terms:

Yern — Uern = (9n(Z2) — gn(Z4)) + (9n(Zt) — gn(Zt)) + Et+h ) (3)
approximation error estimation error irreducible error

93.(Zy) as the true model, unknown to the forecaster, and §,(Z;) as the fitted model. Their differences
with gy, the model selected by the forecaster, define the approximation and estimation errors. Finally,

€¢+h 1s the irreducible error term, representing some fundamental uncertainty.

The specific model g;, is chosen from the set G containing all possible allowed models by solving by the

following minimization problem:

min {9 = 9n(Ze,7))° + pen(r.gn) } @)

6 All series are stationary at the 5% level after differencing, according to the Augmented-Dickey-Fuller test. However,
the AEX and industry (production index) variables also pass the Augmented-Dickey-Fuller test at the 5% level when in
log-levels. However, after further inspection, we decided to focus on the differenced series in our main analysis, aligning with
the common assumption in the literature that these variables are I(1). For completeness, the results with these variables in
log-levels are provided in Appendix



In the case of machine learning, G can be quite large, to allow for flexible model fitting. The first term
in Equation [4|is an error term, for which we use a simple least squares function. The second term is
a regularization term penalizing too much complexity to avoid overfitting. The penalty depends on the
specific model g; and a hyperparameter 7, dictating how much model complexity is penalised. Note
that hyperparameters cannot be obtained from the minimization problem and need to be obtained from

suitable cross-validation.

This also introduces the three aspects of machine learning we are interested in. First, the form of g,
specifically if it is non-linear. Second, the regularization; this can be through an added penalty such as
in Equation [4] by introducing randomness in the model or by restricting the feature matrix Z;. Lastly,
hyperparameter tuning/cross-validation. The hyperparameters can be obtained in several ways, which

can significantly alter its predictive performance. Our workflow is visualised in Figure [3

fz(Hy) Fitting/CV
H; Zy gn(Zs, 7) ————— Prediction

Figure 3: The workflow of our models. We start with a large dataset H;, using this we construct a feature
matrix Z; on which a specific model g, (Z;, 7) is trained, this includes regular fitting and-cross validation.
This model is then used to make a prediction.

3.1 Data environment and feature matrices

Machine learning is usually associated with having a larger dataset containing a large number of features.
To distinguish the effect of the large dataset on our results and to address whether adding a large number
of features is beneficial, we follow |Goulet Coulombe et al.| (2022) and define two data environments: data
poor and data rich. In our data rich environments, we distinguish between several strategies to reduce
the amount of variables and the risk of overfitting: 1) We employ two independent feature engineering
techniques - using factors, where we rotate the data with principal component analysifﬂ (PCA), and
the variance inflation factor (VIF) - to construct a feature set with maximal information. Detailed
descriptions of these methods are provided in Appendix [B| 2) We enhance the loss function to penalise
the selection of too many features (shrinkage). This method is commonly regarded as a machine learning
technique and is discussed further in Section Comparing 1) and 2) will give insights in how
shrinkage methods can add to the traditional econometric arsenal. Comparing VIF and factors will give
insights whether rotating the data increases predictive performance, as this often leads to a decrease of

interpretability.

“While there are more sophisticated methods available, we use the standard PCA method, as this is still widely used in
forecasting.

8In principle, we also use a random forest as a predictive model, which in itself already includes regularization by means
of bagging and random feature selection. We do not consider this independently.
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For our purpose, we construct six feature matrices Z, with rows Z;, from a set of lags, {y;—; }gyzo, and
the set of (potentially lagged and rotated) variables that are included in the NL-MD, which we denote

as {Xi—; }gio. With p, and p, the largest lags included.

e Data poor. The data poor environment only consists of lags of the target variable, which we can
formally state as the set Z; = {yt,j};’io. In our model the amount of lags is always tuned by

cross-validation.

e Data rich, diffusion indices, ARDI. In this case, we follow the standard factors approach. The
factors F; are selected using standard PCA and then subsequently lagged. This results in the

J=pz.n=K

following feature matrix Z; = {y;_, }?io u{F",} . The superscript n denotes the selected

j=0,n=1

factor, while K indicates the total amount of factors used. This feature matrix has hyperparameters

{py, P, K}.

e Data rich, VIF. We select features from the feature set {X;} using the VIF approach. The selected

J=Pz

features are then lagged. This results in the following feature matrix Z; = {y;—; }?io u{vy b,

where V" is the nth selected variable by the VIF method. We select up to 10 variables. This

feature matrix has hyperparameters {p,, ps }.

e Data rich, B1. Here, we focus on the simplest way of including data and simply combine all
the covariates and lags in a simple manner: Z; = {yt,j}fyzo U {X:}. In this case, we study if
some shrinkage regularization (Ridge, ElasticNet, Lasso) deals with the problem of overfitting the

unstructured data provided.

e Data rich, B2. We rotate X; using PCA and keep all the factors. This set is then combined with
the lags of the dependent variable. This yields the following feature matrix: Z; = {y;—; }fyzo U{F:}.
Again, we use this feature matrix in combination with shrinkage regularization. Comparing B1 and

B2 gives us insight in whether sparsity can emerge in a rotated dataset.

e Data rich, B3. We take the full set of lagged variables, {yt,j}é’io U {thj}fiov and rotate this
using PCA. Similar to B2, we keep all the factors and use shrinkage regularization methods on this

dataset.

These six feature matrices then form the basic building blocks of our models. The first three (data
poor and data rich, diffusion indices and VIF) will be the standard data environments of our models.
Comparing the models trained on these can give us an indication of the effect of additional data. The
latter three (B1, B2, B3) will be used in combination with shrinkage regularization to compare traditional

factor models with shrinkage techniques.

11



The specific grid we use when selecting our lags and factors is given in Appendix [C] Furthermore, a
thorough discussion of several forms of data pre-processing and feature engineering and its effect on the

forecasting performance can be found in [Coulombe et al.| (2021a).

4 Models and features

In this section, we introduce the models and their distinguishing features. First, we present our workhorse
models, which serve as the foundation of our analysis. These models are then enhanced with specific
machine learning features. To accurately assess the impact of each machine learning feature, we ensure
that the machine learning models remain, apart from the machine learning feature, closely aligned with
the workhorse models as much as possible, with the only difference being the addition of the respective
feature. For each model, we use a feature matrix Z in combination with the specific model. Both the
feature matrix and models have hyperparameters to be tuned. Appendix [C] gives an overview of our grid
choices and the packages used in our modelling set-up. Furthermore, a list of all our models and their

including features is shown in Table[3| The setup follows [Goulet Coulombe et al.| (2022) closely.

4.1 Traditional models

As a counterpart, or baseline, for our machine learning models, we use three more traditional ‘workhorse’
macroeconomic models. For our data poor environment, we use a standard autoregresive model (AR)
and for our data rich environment we will apply the auto regressive model with diffusion indices (ARDI)
from [Stock and Watson| (2002bf). Additionally we employ a simple linear model on the VIF feature matrix
(ARVIF). In principle, all these models are linear regressions on the feature matrices Z. The AR, ARDI
and ARVIF models then differ in the feature matrix used. Therefore, all these models can be expressed

as follows,

Yerh = ZiB + €t (5)

Here, Z; determines the model, if it is the data poor dataset, we run a simple AR model, while the
diffusion indices dataset leads to the ARDI model and the VIF dataset leads to our ARVIF model. While
our notation is appealing for its simplicity, the ARDI and AR models are usually expressed differently in

econometric literature. The standard expressions are shown in Appendix [D]

12



4.2 Three aspects of Machine Learning

To compare the added marginal value of machine learning to traditional econometric methods, we define
three aspects of machine learning. These can be added as ‘treatments’ to our base models. Three aspects

we investigate are alternative shrinkage, non-linearities and cross-validation.

For a large overview of machine learning models, see |[Hastie et al.| (2009)). For a more complete discussion

of macroeconomic forecasting and big data, see |Bok et al.| (2018)).

4.2.1 Shrinkage

As an alternative to the traditional factor approach or data selection using the VIF, one could opt to
instead use shrinkage regularization. In this approach, a penalty term is added to the loss function,
analogous to the penalty term in Equation [dl Of course, there are many other ways to regularize the
amount of variables, as either factors or shrinkage are only two methods in the wide arsenal of tools
available. For example, a random forest uses aggregation of bootstrapped samples and random feature
selection, which naturally leads to a stable prediction without overfitting (Breiman| 2001, Hastie et al.,
2009)). However, for our purposes we wish to compare the traditional models with shrinkage techniques,
defined as a penalty term added to the loss function that penalizes model complexity. To properly isolate
the added value of shrinkage as compared to traditional methods, we cannot use PCA regularization,
as we wish to compare the shrinkage methods to this regularization method. Therefore, our shrinkage

models use the B1, B2 and B3 feature matrices.

ElasticNet, Lasso, Ridge We will consider three specific cases of ElasticNet regularization (Zou and

Hastie, 2005). ElasticNet is a linear regression model that minimizes the following loss function:
. 2 11—«
ngn{Z(th—Z;ﬁ) A (25z+a5k|)}. (6)
t k

The model incorporates two hyperparameters: the strength of penalization, A\, and the mixture term, c.
Both parameters are tuned in the elastic net case. However, one could alternatively set « to 0, resulting
in ridge regression (Hoerl and Kennard} [1970)), or set a to 1, leading to lasso regression (Tibshiranil 1996).
Lasso regressions are popular for dimension reduction, as they shrink less important variables to zero,
unlike ridge regression, where all variables receive similar shrinkage. However, for lasso to be effective,
the feature set must exhibit emerging sparsity, meaning the signal should depend on only a few variables.

If this is not the case, it is generally more suitable to use ridge. Comparing ElasticNet, ridge and lasso
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for B1, B2, and B3 provides insight into whether rotating the dataset can induce sparsity.

By comparing these models with the traditional factor model, we can estimate the added value of

shrinkage over the conventional factor approach. Similar analyses by [Stock and Watson| (2012)) and

|Goulet Coulombe et al.| (2022)) found that, on average, shrinkage methods provide similar or lower

forecasting performance compared to factor models.

4.2.2 Non-linearities

In forecasting, linear models are still very popular. This is not surprising given their simplicity and

interpretability. However, a specific advantage of machine learning is in the flexibility of their functional

form (Hastie et all [2009). Recent research has shown that the non-linear part of machine learning

can improve macro-forecasts (Exterkate et all [2016] |Gogas et all, [2022] |Goulet Coulombe et all, [2022]

[Kant et all |2022, Maehashi and Shintani), 2020)), especially in crisis situations (Coulombe et al., 2021D)).

Therefore, we opt to include two non-linear models in our setup: a kernel ridge regression (KRR) and a

random forest (RF).

Kernel Ridge Regression To introduce non-linearities in a model, one might be tempted to consider
Equation [p| and modify it to include multivariate functions of predictors. However, this can quickly lead
to overfitting and computational issues as such a model has a large amount of parameters. A potentially

smarter way is to use the kernel trick to introduce non-linearities. In our description of the model below,

we largely follow [Exterkate et al.| (2016). First, we introduce a function ¢(Z;), which transforms the N

features into M transformed features. We call the vector of features for a time t z; = Z; = o(Z;). We

then assume that our regression equation is linear in z:

Yerh = 27 + Etth- (7)

Using ridge regression, as described in Section we can then obtain the following solution for the
coefficients:

= (22 + 1) ‘7. (8)

With Z a T x M matrix of transformed features and y the vector of observations of the target. To have a
flexible non-linear function, it is often needed that M > N} this adds to the problem that in some cases

our predictor set IV is already larger than our amount of observations T'. The matrix Z'Z has dimensions

of M x M, which can cause computational issues (see, e.g. [Exterkate et al. (2016)). This is where the

9A simple example of this would be a Taylor series, to describe a relatively complicated function describing until order
d one needs M proportional to N¢.
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kernel trick comes in. The kernel trick exploits the fact that for such datasets it can be much more useful
to work with T-dimensional data than with M-dimensional data. Specifically, we can rewrite Equation
as 4 = 7' (ZZ’ + )\IT)_l y, meaning we can write the prediction as ., = 2|2’ (ZZ’ + )\IT)_1 y (see
e.g. [Exterkate et al.| (2016)). Now, we define the T x T matrix K = ZZ' and the vector ky = Zz, such

that we can write our prediction as:
Jern = ki (K +Mp) " y. (9)

This is completely equivalent to using Equation [§] but computationally more tractable. However, to
obtain more computational savings it is important that K and k can be computed easily. For this, note
that all elements of K and k; have the following form: ¢(a)'$(b), for some vectors a and b. Thus, instead
of choosing the basis functions directly, it is sufficient to choose a mapping (a,b) = ¢(a) ¢(b), where one

can choose a mapping that is computationally tractable@

In our case we pick a radial basis function kernel:

202

K(a,b) = exp (-”“‘b”2> . (10)

The kernel function can be understood as a measure of similarity between two covariates. This choice
of kernel is quite standard and has been shown to perform well in macroeconomic forecasting (Exterkate
et al., 2016l [Sermpinis et all [2014). This model is then trained on the data poor, VIF and the ARDI

feature matrices.

Random Forest Tree-based methods, such as decision trees, partition the feature space into a series
of rectangles or hyper-rectangles. Each of these partitions, also known as end nodes or leaf nodes,
is assigned a predictive value. This value can range from a simple constant to a more sophisticated

calculation. Usually, the average within the node is used. This then leads to the following prediction,

M
evn =Y CmIm (Z € Rp). (11)
m=1

Here, I,,, (Z € R,;) is one for the features Z that lie in region R,,, and zero otherwise, ¢, is a corresponding
constant and M is the amount of end nodes. While a single tree is intuitive and easy to interpret, it is
also prone to overfitting and unstable. A potential fix for both of these problems comes in the form of
Random Forests, which were introduced by Breiman| (2001). To obtain a random forest, a large number

of trees is trained on several subsamples of the data. Furthermore, the available features that can be

100ne can note that picking the identity mapping x(a,b) = a’b results in a normal ridge regression.
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considered at each split is also randomized. This model is trained on the data poor and the ARDI and

VIF feature matrices.

In principle, both non-linear models could work well with a more unrestricted feature matrix as the extra
regularization coming from PCA or VIF is not necessarily needed. However, |Coulombe et al.| (2021al)
gives some evidence that some forms of feature engineering do improve the predictive performance. Our
reason for not giving the models access to the unrestricted dataset is more practical: we want to be able
to see the specific effect of the non-linear feature. Therefore, we want to keep the KRR and RF models

as much aligned with the ARDI and ARVIF models as possible.

4.2.3 Hyperparameter tuning

Choosing an optimal set of hyperparameters is crucial for generating reliable out-of-sample predictions.
It is important to identify the right level of model complexity to prevent overfitting on the training
data. There are several ways of approaching this. Among others, there are information criteria based
approaches such as the AIC and BIC (Granger and Jeon, 2004])), similarity-based approaches (Dendramis
et al., 2020)), and approaches making use of k-fold and Monte Carlo cross-validation (Fonseca-Delgado
and Gomez-Gil, 2013|). These approaches are in principle all based on estimating and minimizing the

out-of-sample forecasting error.

In this case we limit our scope to two cross-validation methods for hyperparameter tuning. Cross-
validation has the benefit that it is applicable to all models, and generally gives good results (Hastie
et all 2009). The standard approach in machine learning is using k-fold cross-validation, where the
training data is randomly partitioned in k groups, which are iteratively used as training and test data.
From a data perspective, this is quite efficient, as for each fold all data are used. However, for time series,
the situation is more complicated, as randomly partitioning the data leads to training the model on slices
later than the test slices. This is illustrated in Figure 4} Here, the red points are the test slices that the
model is evaluated on, after being fitted on the blue slices. This can potentially be problematic and lead
to overfitting. Likewise, within our framework, residual non-stationarity and serial correlation frequently

exist, aspects that k-fold validation fails to address (Bergmeir and Benitez, [2012).

To avoid these problems, forecasters often adopt pseudo-out-of-sample cross-validation (POOS-CV). This
is illustrated in Figure |5l In this way, the temporal structure is taken into account by removing points at
the end of the dataset systematically. However, while this scheme is potentially cleaner, it does mean that

less data is used for the cross-validation and more so, that the amount of data in the training slices varies
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significantly. In our already data sparse environment, this could also lead to a reduced performance.

In the end, the trade-off between the two is an empirical one, depending on the data. Both Bergmeir
et al.| (2018)) and |Goulet Coulombe et al.| (2022) investigated this trade-off on datasets with about 300
observations, and found mild evidence in favour of k-fold. We will investigate if their results also hold on

Dutch macroeconomic data.

In our implementation of k-fold we use five folds. In our POOS cross-validation implementation we use
an initial window (i.e., the minimum amount of points used as a training slice) of 0.75 times the available

training observations.

4.3 Overview of models

In total we have 2x (44244 3%3) = 42 models, for each variable-horizon combination. All models have a
k-fold and a POOS cross-validation version, explaining the overall factor two. The first four corresponds
to the data poor models, of which two have non-linear features. All of these models have two (ARDI,
VIF) data rich counterparts, relating to to the 2 x 4 term. Additionally, in the data rich case we also
have three alternative shrinkage models (Lasso, Ridge, ElasticNet), utilizing the three different feature

matrices available for them (B1, B2, B3), matching with the last term.

As a benchmark, only used for our RMSE tables, we use a simple AR model with the hyperparameters
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Figure 4: This figure gives an example of k-fold cross-validation, using 5 folds. The available data is
randomly partitioned into 5 folds of equal size. For each set of hyperparameters and for each fold the
model is fitted to the train data and evaluated on the test data. Then, for each set of hyperparameters,
the average RMSE over the folds is calculated. The set with the lowest RMSE is adopted and used to
forecasts the target.
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Figure 5: This figure gives an example for pseudo-out-of-sample cross-validation (POOS) for a horizon of
two. During the cross-validation, POOS takes the timestructure into account as it only uses points from
the past for predicting the test points. The total number of ‘folds’ is determined by the difference between
the total window and the initial window. Each fold involves expanding the initial window by one data
point until all available data has been utilized. In each fold, the Root Mean Squared Error (RMSE) is
computed. These RMSE values are then averaged, and the hyperparameters yielding the lowest average
RMSE are selected.

selected by a Bayesian Information Criterion (BIC). Bringing our total amount of models to 43. These
models are written down in Table [Bl We evaluate these models for seven variables and four different

horizons, bringing the total number of models for our meta analysis on 4 % 7 % 43 = 1204.

5 Evaluation and out-of-sample experiment

In this section we describe the strategy we use to evaluate which models lead to the best performance.
First, we consider the experiment we conduct to evaluate our models. Second, we introduce the identification
strategy we use to identify which aspects of the models work well. This approach closely resembles the

approach used by (Goulet Coulombe et al.| [2022)).

5.1 Pseudo-out-of-sample experiment
To investigate the performance of our models we perform a pseudo-out-of-sample experiment. In this

experiment we mimic the actual forecasting practice as much as possible. We start with an initial window,

on which the model is trained. Using the fitted parameters, we forecast one horizon into the future. Then,
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Table 3: For each variable and for each horizon we train 43 models. These models are shown in this table
with their corresponding features, as described in Section In total there are 16 models containing
non-linearities and 18 containing alternative shrinkage. Finally, each model has both a POOS and a
k-fold version.

Feature 1: Feature 2: Feature 3: Data-environment:
Description in Section m M
Models Non-linearities Regularization Cross-validation Feature matrix
Data poor
AR, BIC (BM) BIC Poor
AR, k-fold k-fold Poor
AR, POOS POOS Poor
RR AR, k-fold Ridge k-fold Poor
RR AR, POOS Ridge POOS Poor
RF AR, k-fold X k-fold Poor
RF AR, POOS b POOS Poor
KRR, k-fold X Ridge k-fold Poor
KRR, POOS X Ridge POOS Poor
Data rich
ARDI, k-fold PCA k-fold ARDI
ARDI, POOS PCA POOS ARDI
RR ARDI, k-fold Ridge/PCA k-fold ARDI
RR ARDI, POOS Ridge/PCA POOS ARDI
RF ARDI, k-fold X PCA k-fold ARDI
RF ARDI, POOS X PCA POOS ARDI
KRR ARDI, k-fold X Ridge/PCA k-fold ARDI
KRR ARDI, POOS X Ridge/PCA POOS ARDI
ARVIF, k-fold VIF k-fold VIF
ARVIF, POOS VIF POOS VIF
RR ARVIF, k-fold Ridge/VIF k-fold VIF
RR ARVIF, POOS Ridge/VIF POOS VIF
RF ARVIF, k-fold x VIF k-fold VIF
RF ARVIF, POOS X VIF POOS VIF
KRR ARVIF, k-fold X Ridge/VIF k-fold VIF
KRR ARVIF, POOS x Ridge/VIF POOS VIF
Lasso (B1), k-fold Lasso k-fold B1
Lasso (B1), POOS Lasso POOS B1
Lasso (B2), k-fold Lasso/PCA k-fold B2
Lasso (B2), POOS Lasso/PCA POOS B2
Lasso (B3), k-fold Lasso/PCA k-fold B3
Lasso (B3), POOS Lasso/PCA POOS B3
Ridge (B1), k-fold Ridge k-fold B1
Ridge (B1), POOS Ridge POOS B1
Ridge (B2), k-fold Ridge/PCA k-fold B2
Ridge (B2), POOS Ridge/PCA POOS B2
Ridge (B3), k-fold Ridge/PCA k-fold B3
Ridge (B3), POOS Ridge/PCA POOS B3
ElasticNet (B1), k-fold EN k-fold B1
ElasticNet (B1), POOS EN POOS B1
ElasticNet (B2), k-fold EN/PCA k-fold B2
ElasticNet (B2), POOS EN/PCA POOS B2
ElasticNet (B3), k-fold EN/PCA k-fold B3
ElasticNet (B3), POOS EN/PCA POOS B3
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we add an extra point to the window and do this exercise againE forecasting the next point on the line.
This process is repeated until every point of the out-of-sample period is forecasted. The predictions are
then compared to the realisations. This iterative process is shown in Figure[6] Our out-of-sample period
ranges from January 2015 until December 2023. Similar to |Goulet Coulombe| (2020) and |Sermpinis et al.
(2014) we re-optimize our hyperparameters every two years. This is due to computational reasonsH
Due to the limited amount of data available, we have decided to include the period containing both

the COVID-19 pandemic and energy crisis in our sample. However, we included a robustness check in

Appendix [E4]

Ideally, one would use real-time vintage data, i.e. data that was available at the time of the vintage as
opposed to the data available today (which potentially has been subject to revisions). However, we do
not have vintage data available for a satisfactory long period. In our experiment, we use data of the
same vintage. We do not expect the results to change significantly because, although revisions introduce
some uncertainty, other sources of uncertainty are typically much larger, as shown by [Diron| (2008) for

standard regression models and |[Elbourne et al.| (2015 for structural models.

1 This procedure is known as the ‘expanding window’ approach, in contrast to a ‘fixed window’ approach. In the latter
case the total size of the window is kept fixed. This can take less time to calculate, however, it generally leads to worse
predictions.

12We also note that some experimenting with optimizing every year made no notable difference.
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Figure 6: A schematic overview of our pseudo-out-of-sample experiment. In this case, the first four points
are the intitial window, while the last six points are the out of sample period. Iteratively, a forecast is
made, compared to the realisation and then the realisation is added to the expanding window to be used
in the next forecast.
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5.2 Evaluating the effects

To test whether the machine learning features have a significant impact on the forecasting results we
first define the same R-squared as|Goulet Coulombe et al.| (2022) to get comparable coefficients between

variables:
2

(&
Rf,h,v,m =1- 1 Lhuvm — 2 (12)
T 2icoos Wiv — Uv)

where t, h, v, m denote the time, horizon, variable and model under consideration and g, = % > icoos Yiw
the average over the out-of-sample period OOS . Using this R?, as opposed the squared error ef’ hoom =
(Gt hom — yt+h,v)2, has the benefit that it yields coefficients that can be compared between variables.

Note that the R? ranges from —oo to 1, where 1 means a perfect prediction.

For each feature of machine learning we run an independent regression on a specific subset of models
M. For data rich, we compare the models trained on the ARDI and ARVIF matrices to the models
trained on the AR matrix. For non-linearities, M contains the linear AR, ARDI and ARVIF models, as
wel as the KRR and RF models. For regularization, it contains the ARDI model and B-models. Finally,

for cross-validation the whole model set is used. We run the following fixed-effects regression:
vm e Mf : R?,h,v,m =Qaf + ¢t,v7h + Um,t,v,hs (13)

with ¢ a fixed effects term, taking into account fixed effects for ¢, v and h: demeaning the prediction
target. w is the error term and ay is a dummy for the feature under study f. This regression is then
used to study the significance and size of the effect as compared to the null hypothesis that the feature

has no effect on the R2.

To isolate more specific partial effects, this term can be interacted with other terms, for example, with

horizon- or variable-specific dummies.

Our pseudo-out-of-sample period consists of 108 observations, multiplying this with our 1148 modelﬂ
gives us a total dataset of 127,008 observations. We also distinguish between the backtransformed and
transformed data. The backtransformed data gives the predicted variable in levels, while the transformed
data gives the variable transformed according to Equation [2l For each of these observations we calculate

an R2, according to Equation

13The number is different from the previously mentioned number as the AR BIC is not used in this part.
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6 Results

In this section we describe the results of our experiment. First, we give an overview of our panel-dataset.
Then, we give a brief overview of the general performance of our models. Finally, we describe the specific

effects of certain features of machine learning.

6.1 R? distribution

We consider the distribution of the R?’s in both the transformed and backtransformed datasets. Hereby,
we define an outlier as R? ¢ (—1,1). Table shows summary statistics of the R?’s, and Figureshows the
distribution of the R?’s in both dataset, whereby we make a distinction between outliers and non-outliers.
More detailed information about the number of outliers in each specific model can be found in Table
in Appendix [F] It is noteworthy that, unsurprisingly, a significant proportion of outliers occurred during

the COVID period in our sample.

A clear observation is that the backtransformed predictions have a higher average R? and less outliers.
This is not a surprise, as in our definition of the R? the predictive error is compared to the average
difference with the average. For the transformed variables, the series is more likely to be stationairy, and
therefore the average should be a better prediction than for the variables in levels. This is reflected in a

lower R2.

For our main analysis, we use the transformed predictions to calculate the R?’s and winsorize the R?’s
at the 5th and 95th percentiles. This is to make our analysis more robust to outliers. A forecaster would
be hesitant to accept significant outliers in the predictions without further study or expert opinion. We
choose to analyze the R2-data of the errors of the transformed predictions because, in this case, the
error is compared to the average of a stationary series. This provides a more meaningful statistic than
comparing it to the average of a series in levels containing a unit root. Therefore, we highlight the

results of the transformed predictions. However, we included a robustness check for data transformation

Table 4: Summary statistics of the R?, as defined in Equation over our full dataset.

Transformed dataset Backtransformed dataset

Statistic
mean -0.08933 0.6654
minimum -173.9564 -31.6680
5th percentile -3.9116 -0.5296
median 0.7810 0.9586
95th percentile 0.9987 0.9999
maximum 1.0000 1.0000
standard deviation 2.7393 1.0773
number of observations 127,008 127,008
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Outliers transformed data set (n = 18026)
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Figure 7: For each variable, horizon and model, we determine for each time in the pseudo-out-of-sample
period the R? according to Equation In this figure the distribution of R? in both the transformed
(i.e. predictions in transformed format) and backtransformed (i.e. predictions in level format) dataset is
shown. We make a distinction between outliers and non-outliers: a value of R? below —1 is considered
to be an outlier, a value of R? between —1 and 1 is considered to be a non-outlier.

(Appendix [E.2)) and winsorizing (Appendix [E.3]).

6.2 General performance

We consider the general performance of all models. Appendix [G] summarises the predictive performance
of each individual model. For each variable-horizon combination the best performing model is shown in
Table [5| The result is a mixed bag of (mostly) data rich models. In 22/28 cases the best model is trained
on a data rich feature matrix. From the 22 data rich models, seven are trained on a B; matrix, 10 on
the ARDI matrix and five on the ARVIF matriXE Although it has to be kept in mind here that we also
have significantly more data rich models in our arsenal. Then, out of the 28 best models, nine have non-
linearities (three times KRR, six times RF). From the 19 linear models, 10 are standard linear models:
five ARDI models, one ARVIF and four AR models. These are supplemented with several shrinkage
models: seven ridge models, one Lasso and one ElasticNet. 22 out of 28 models use k-fold instead of

POOS cross-validation, giving a clear sign that k-fold can work very well. However, while these models

14\We note that in our regressions for the data rich treatment effect, we do not take the B; matrices into account, as these
are not directly comparable to a data poor model.
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Table 5: The best performing model for each variable-horizon combination, according to their OOS-
RMSE. The dots indicate several features the models can have. Red indicates data rich, where as
opposed to our regression study, we also include the B; feature matrix. Green indicates shrinkage and
blue non-linearity’s. The models with with an orange dot use k-fold cross validation, those without
POOS.

Variable h=1 h=3 h=6 h =12

AEX AR Ridge (B2) Ridge (B2) AR

CPI KRR ARDI ee Ridge (B3) e AR ARDI o

Deposit interest rate RR ARDI o ARDI o RR ARVIF e RF ARVIF ee
Export (value index) ARVIF o RF AR o KRR ARVIF ee Ridge (B2) e
Industry (production index) ARDI o KRR AR e RF ARDI ee RF ARDI ee
Number of sold existing homes AR RF ARVIF ee RF ARDI ee Ridge (B3)
Unemployment rate ARDI o ARDI o Lasso (B2) e ElasticNet (B2) e

might perform well for this specific variable-horizon combination, the general performance of the model
can vary quite significantly. It is therefore not valid to conclude that these models are the overall best

models.

6.3 Overall overview

In Table [G] the results of regression on transformed predictions are shown. It shows the aggregate
treatment effects over all variables and horizons. We find no significant effects. Compared to the findings
of |Goulet Coulombe et al.| (2022), we note several differences in the sign of the treatment effect of the
data rich and shrinkage features, although these are not significant, as we have to keep in mind that we

have less statistical power due to a significantly shorter out-of-sample period.

To analyse the discrepancy for these features with |Goulet Coulombe et al.| (2022), we have done a similar
study on the FRED-MD. This is shown in Appendix [H] Here, we compare the treatment effects for the
full FRED-MD to the treatment effect on a restricted version of the FRED-MD, that mimics our NL-MD
dataset in terms of observations. We find a positive data rich treatment effect in the unrestricted case,

and a null treatment effect in the restricted case. For the shrinkage treatment effect, we see that the

Table 6: This table shows the regression results corresponding to the regression in Equation For
the four different features under study (feature matrix, non-linearities, shrinkage, and cross-validation)
we show the value of oy including its 95% confidence interval. We are controlling for variable, time and
horizon. For each variable the training period starts on a different date (see Table . For all variables the
test period is from 2015MO01 to 2023M12. These results are based on the transformed dataset with applied
winsorizing. These coefficients, the treatment effects, can be interpreted as the change in out-of-sample
R? due to adding the feature.

Feature: Overall treatment effect:
Feature matrix (data poor (0) vs. data rich (1)) —0.0346 (—0.0829,0.0138)
Non-linearities (linearities (0) vs. non-linearities (1))  0.00470 (—0.0412,0.0506)
Shrinkage (no shrinkage (0) vs. shrinkage (1)) 0.0420 (—0.0388,0.123)
Cross-validation (POOS (0) vs. k-fold (1)) —0.0111 (—0.0470,0.0247)
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Figure 8: This figure shows the regression results corresponding to the regression in Equation For
the four different features under study (feature matrix, non-linearities, cross-validation, and shrinkage)
we show the value of o including its 95% confidence interval. We are only controlling for time. For each
variable, the training period starts on a different date (see Table . For all variables the test period is
from 2015MO01 to 2023M12. These results are based on the transformed dataset with winsorizing applied.
The different colours correspond to the seven dependent variables that are being studied. For a specific
colour, the four different horizons are shown as independent lines, where the horizon is increasing going
down the figure (i.e. from h=1,to h =3, to h =6, to h = 12).
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Figure 9: The two figures show the regression results corresponding to the regression in Equation For
the four different features under study (feature matrix, non-linearities, cross-validation, and shrinkage)
we show the value of ay including its 95% confidence interval. In the left panel we are controlling for time
and horizon (the different colours correspond to the seven dependent variables that are being studied).
In the right panel we are controlling for time and variable (the different colours correspond to the four
different horizons that are being studied). For each variable the training period starts on a different date
(see Table . For all variables the test period is from 2015M01 to 2023M12. These results are based on
the transformed dataset with applied winsorizing.
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treatment effect on the full FRED-MD is negative, while for the restricted FRED-MD the effect is null.
Although the error bars are large in the restricted case, this gives some evidence to our premise that the
treatment effects are linked to the number of observations. Furthermore, we note that |Goulet Coulombe
et al.| (2022) finds a more convincing treatment effect for non-linearities. This seems to be mainly driven

by a difference in relative performance of the data poor non-linear models and is further discussed in

Section [4.2.2]

In Figure |8 we show for each variable-horizon combination which machine learning feature contributes
to its performance. In Figure @ we show the aggregated treatment effects per variable (Figure @) and
per horizon (Figure . These figures show that the average increase in R? given the ML feature is
relatively stable across horizons, but varies over variables. We see that for shrinkage the treatment effect
increases with horizon, where for a forecast horizon of 12 the effect becomes statistically signiﬁcantE
For the variables, it becomes clear from Figure [§] that there is a lot of heterogeneity between treatment

effects, indicating that finding the best model is often a variable specific question.

Our main conclusion is thus that many effects seem comparable, with some notable differences between the
variables. Thus, determining a general approach for identifying the most opportune features of machine
learning proves to be challenging. Our results, with a limited dataset, for a small and open economy,
indicate that in this setting any approach should be tailored to the variable under consideration. A
similar conclusion was made by |(Coulombe et al.| (2021b]) for the UK and can be drawn from the results
for Canada in |Goulet Coulombe et al. (2022)). We give further evidence that, when applied to a limited
dataset in terms of observations, shrinkage models perform relatively well, whereas data rich models
perform comparatively worse. In the following section, we analyze each feature independently to identify

specific strengths and weaknesses.

6.4 A closer look at the features

In this section we take a closer look at the models and data-features that drive the treatment effects of

the ML features.
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6.4.1 Data richness

We consider the effect of the data rich feature by contrasting the models trained on the data rich
ARDI/VIF environments with the models trained on the data poor environment, taking fixed effects

into account. In this section we split the results into different subgroups and consider the difference with

|Goulet Coulombe et al.| (2022)).

The discrepancy in the data rich treatment effect compared to |Goulet Coulombe et al.| (2022) is likely

due to the smaller number of observations in our analysis. To check this, we have trained our models
on the FRED-MD as well (Appendix . Comparing the treatment effect on the full FRED-MD, to a
restricted FRED-MD, in terms of observations. The FRED-MD has balanced data going back to 1960,
while our dataset only becomes comparable in the number of variables to the FRED-MD around the
2000-2010’s (see Figure . When restricting the training period artificially for the FRED-MD data, the

positive effect observed for data rich for the unrestricted dataset disappears. Based on this evidence, we

151n the case of non-linearities, the treatment effect is mainly stable because the non-linear treatment effect on data poor
models decreases as a function of horizon, while it increases for data rich models.

+'+‘
) —— i
o] —0—_'1_|
g 1

AR (0) vs.
ARVIF (1)

ARDI (0) vs.
ARVIF (1)

- —— @@
-0.75 -0.50 -0.25 0.00 0.25 0.50
of (change in Rsq)

AEX industry (production index)
* CPI number of sold existing homes
® deposit interest rate @ unemployment rate
® export (value index)

Variable

Figure 10: This figure shows the regression results corresponding to the regression in Equation
interacted with a specific feature matrix dummy. We show the value of ay including its 95% confidence
interval. We are only controlling for time. For each variable, the training period starts on a different
date (see Table . For all variables the test period is from 2015MO01 to 2023M12. These results are
based on the transformed dataset with winsorizing applied. The different colours correspond to the seven
dependent variables that are being studied. For a specific colour, the four different horizons are shown
as independent lines, where the horizon is increasing going down the figure (i.e. from h =1, to h = 3, to
h =6, to h=12).
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conclude that the null effect for the data rich treatment in our analysis is likely driven by the limited
number of observations. This argument is strengthened by the results of |(Goulet Coulombe et al.| (2022)
on the CAN-MD dataset, where the effect of the data rich environment is less convincing. The analyses

in this study also has a limited amount of observations as compared to the FRED-MD.

To see whether the VIF or the ARDI environment drives the result, we compare the models trained on
the ARDI and ARVIF matrices to the models trained on the AR matrix. This is shown in Figure
Here, we see no large differences between the feature matrices. However, the AR and ARVIF models seem
to perform slightly better than the ARDI model. This suggests that, with our dataset, using the factors
regularization method is sub-optimal, as it does not beat the relatively straightforward VIF selection,
or even a simple feature matrix built on lags. Again, this is a result of our limited dataset. To check
our premise that the factor environment works sub-optimally due to our lack of observations, we did a
similar analysis on the FRED-MD (McCracken and Ng| [2016), specifically comparing a longer training
period to a restricted shorter one. This analysis is shown in Appendix [H] In the unrestricted case, we
note that, apart from the positive treatment effect for data rich, factors also perform better than the VIF
data selection method. Thereby giving evidence for the fact that for factors to work optimally, a longer
dataset than the NL-MD is needed. This is in agreement with several other sources, which often have
data with more observations available and find positive effects for factor models (Coulombe et al., [2021a),

Hindrayanto et al., 2016, [Jansen et al., 2016)).

6.4.2 Non-linearities

For the non-linearity feature, we contrast the non-linear models with the linear AR, ARDI and ARVIF
models. The treatment coefficient can thus be interpreted as the average increase of predictive power by

adding non-linearities.

Overall, the treatment effect of non-linearities is null (Table @ In our arsenal we have two non-linear
models: the random forest and the kernel ridge regression. In Figure we compare the two non-linear
models on different feature matrices to see which one drives the results. In the left panel we show the
KRR and RF separately. In the right panel, we show the treatment effects for non-linearities per data

environment.

The KRR and RF perform relatively comparable, with the RF having a slight edge (Figure [11a)).
Considering non-linear treatment effects per variable, most individual variables show a (mildly) positive

effect, except for the AEX and deposit interest rate variables. When only considering non-linear models
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Figure 11: The two figures show the regression results corresponding to the regression in Equation
For two models containing non-linearities we show the value of ay including its 95% confidence interval.
In the left panel we compare the RF and KRR models in general. In the right panel we compare non-
linearities for data rich and data poor environments specifically. We are only controlling for time. For
each variable, the training period starts on a different date (see Table|2]). For all variables the test period
is from 2015MO1 to 2023M12. These results are based on the transformed dataset with winsorizing
applied. The different colours correspond to the seven dependent variables that are being studied. For a
specific colour, the four different horizons are shown as independent lines, where the horizon is increasing
going down the figure (i.e. from h =1, to h =3, to h = 6, to h = 12).
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that are data rich (Figure , the treatment effect notably increases. As in this case, the effect is
positive and significant when aggregated over all variables, indicating that non-linear methods can deal
with a large amount of features in a relatively efficient manner, leading to a better predictive performance.
However, in the data poor case, the effect is negative and significant. This pattern also holds for the

KRR and RF independently, both perform relatively better in a data rich environment.

While there is some recent literature finding positive effects of non-linearities for forecasting (Gogas
et al. [2022 |Goulet Coulombe et al. [2022, |[Kant et al., |2022, [Maehashi and Shintani, [2020, |Medeiros
et all [2021)), there is also some evidence against it (Marcellino|, 2008, |Stock and Watson, [1998). Yet,
the papers finding negative results are mainly focused on neural networks or interacted regressions. In
general, forests perform relatively well in the literature. Therefore, our results are slightly surprising,
as the RF does not outperform the other models consistently in our case. However, our results are not
directly at odds with these papers. Most of the aforementioned papers are horserace papers, having a
different set-up. Additionally, we do find a significant and positive treatment effect for non-linear models

that are data rich.

6.4.3 Cross-validation

The treatment effects of k-fold cross-validation are mostly indecisive. From the seven variables we
consider, only deposit interest rate has a significant treatment effect, in favour of POOS cross-validation.
Therefore, it is usually acceptable to use k-fold cross-validation over POOS cross-validation. This is in
line with the conclusions of |Goulet Coulombe et al.| (2022) and |[Bergmeir et al.| (2018)). This has practical
benefits. POOS cross-validation can be time consuming, due to its computational time scaling with the
amount of observations. In principle, one could reduce the number of training slices in POOS cross-
validation to make the computational time comparable to k-fold cross-validation. However, we have not
investigated the impact of this approach on the model’s predictive performance, and it could potentially
lead to a decrease in performance. Using k-fold has another practical benefit. Many off-the-shelf ML
models use k-fold cross-validation as their standard method, making it easy to apply these models to an

macro-forecasting environment without the need to explicitly tailor its cross-validation setup.

6.4.4 Shrinkage

To estimate the performance of shrinkage relative to the standard factor model, we contrast the shrinkage

models with the ARDI model. Thus, the treatment effect is the average increase in R?, when going from
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Figure 12: This figure shows the regression results corresponding to the regression in Equation For
three features related to shrinkage we show the value of a including its 95% confidence interval. We are
only controlling for time. For each variable, the training period starts on a different date (see Table .
For all variables the test period is from 2015M01 to 2023M12. These results are based on the transformed
dataset with winsorizing applied. The different colours correspond to the seven dependent variables that
are being studied. For a specific colour, the four different horizons are shown as independent lines, where
the horizon is increasing going down the figure (i.e. from h =1, to h =3, to h =6, to h = 12).

the ARDI to the shrinkage model.

From the overall results, i.e. Table [6] we know that on average the ARDI models do not outperform
the shrinkage models significantly. The aggregate effect differs from the results on the FRED-MD,

but it is more in line with the results on the CAN-MD, a dataset with limited observations as well

(Goulet Coulombe et al., [2022)). To test whether, relative to other models, the predictions of shrinkage

models improve as a function of observations we turn to our FRED-MD analysis (Appendix [H]). This
analysis provides additional evidence supporting our premise, indicating that shrinkage models perform

relatively well with limited observations compared to factor models.

To compare the predictive performance of the three feature matrices, we have illustrated the partial
effects of the B1, B2, and B3 feature matrices. This is shown in Figure Overall, the B2 and B3
models perform comparably and often better than the benchmark, whereas the B1 models underperform
relative to B2 and B3 models. This indicates that rotating the dataset is helpful in terms of predictive
performance, suggesting that there is some emerging sparsity due to the factor approach that improves

predictions. However, this is mainly so for the AEX, unemployment rate and export variables.
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Table 7: This table shows the regression results corresponding to the regression in Equation for
two different training period settings. For the four different features under study (feature matrix, non-
linearities, shrinkage, and cross-validation) we show the value of af including its 95% confidence interval.
We are controlling for variable, time and horizon. We show the results for the maximum training period
setting (for each variable the training period starts on a different date, see Table [2)) and the short training
period setting (for each variable the training period starts on 2010M01). For all variables the test period is
from 2015MO01 to 2023M12. These results are based on the transformed dataset with applied winsorizing.
These coefficients, the treatment effects, can be interpreted as the change in out-of-sample R? due to
adding the feature.

Feature: Maximum training: Short training:

Feature matrix (data poor (0) vs. data rich (1)) —0.0346 (—0.0829,0.0138) —0.0495 (—0.0977,—0.00120)
Non-linearities (linearities (0) vs. non-linearities (1))  0.00470 (—0.0412,0.0506)  0.0356 (—0.0193,0.0904)
Shrinkage (no shrinkage (0) vs. shrinkage (1)) 0.0420 (—0.0388,0.123) 0.0410 (—0.0374,0.119)
Cross-validation (POOS (0) vs. k-fold (1)) —0.0111 (—0.0470,0.0247)  —0.00306 (—0.0447, 0.0385)

6.5 Different train period

Arguably, a more fair comparison between the variables is the case where all variables start at the same
time. Therefore, we have also trained our models on a sample where all variables have access to the same
feature matrix, with variables starting at January 2010. This then also gives information about the effect

of extra training data, as compared to the original sample.

We show the results with a shorter training period in Table[7] The table gives an indication of the effects
of limiting the sample. The values of the maximum and shorter training period are relatively comparable,
and the overall pattern is similar. We highlight several differences between the short and long training

period.

The average data rich treatment effect increases slightly when using the longer training period. This is
to be expected, as the bottle neck in our case is the amount of observations. There is some movement
in the shrinkage case, but the overall treatment effect stays roughly the same. Furthermore, the average
non-linear treatment effect increases slightly for the shorter training period. Possibly, this trend could be
attributed to the greater availability of independent variables at a later starting date (see Figure|lb)). In
Appendix [[] we show the best models for each horizon for the short training period. Here, we see that a
larger fraction (13/28) is now non-linear as compared to Table |5, which we attribute to our premise that
non-linear models can flexibly handle the increased availability of features. Finally, even though there

are less observations available, most of the best models are still data rich (22/28).
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7 Conclusion and discussion

In this paper we have applied the framework of|Goulet Coulombe et al.| (2022)) to a novel Dutch dataset, the
NL-MD, that contains a large amount of predictors describing the Dutch macroeconomy. However, while
this dataset is large in predictors, it has a relatively small number of observations. We considered how
several ‘features’ of machine learning affect the predictive performance for forecasting seven variables over
four horizons in this challenging environment. We consider four features: data richness, non-linearities,

cross-validation, and shrinkage. We obtained the following results.

The relative performance of machine learning features is quite variable dependent. With a dataset with
limited observations, such as the NL-MD, the specific approach should therefore be tailored to the variable
under prediction (Figure .

While the best model for a given variable-horizon combination is often a data rich model (Table , the
average data rich model does not perform significantly better than the average data poor model (Table
@. Within the data rich environment, we compared two data compression mechanisms: a standard
factor approach (Stock and Watson, 2002a)), and a simple variable selection mechanism based on the
variance inflation factor (VIF). In general, the simple VIF and AR models perform at least as well as
the factors approach (Figure . While these results might appear surprising, they can be explained
by the small number of observations. As a robustness check, we have also done our analysis on the
FRED-MD, comparing the treatment effect on the full FRED-MD, to a restricted FRED-MD, in terms
of observations. When restricting the training period artificially for the FRED-MD data, the positive
effect observed for data rich using the unrestricted dataset disappears. In the unrestricted training period
case the factors perform better than the VIF method as well (Appendix , but for the restricted case
there is a null effect. Therefore, the difference in data rich treatment effect is likely due to the limited

number of observations in our dataset.

Averaged over all variables, non-linearities have no significant treatment effect relative to their linear
counterparts (Table @ Nevertheless, for some variables the treatment effect is positive (Figures @
Furthermore, when only considering data rich models, the treatment effect is positive and significant
(Figure [11b]). This shows that non-linear models can handle a large amount of features relatively well.
While our findings do not show a definitive negative impact of non-linearities, they also do not provide
an clear positive outcome. This is mainly driven by the lacking relative performance of the data poor
non-linear models. This result is somewhat surprising, as the literature suggests that our non-linear
models, KRR and RF, generally perform well (Exterkate et al.l 2016, |Goulet Coulombe et al.l 2022, [Kant

et al., |2022, |Medeiros et al., [2021)).
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There are almost no significant negative effects from using k-fold cross-validation (Figure . Therefore,
the choice of method depends on which is most suitable for practical implementation. In most cases,
including ours, the computational time of POOS cross-validation scales with the length of the data,
whereas k-fold cross-validation, with its random sampling, provides an efficient way to keep computational
time limited. Further research could explore comparing the methods when using the same number of
folds, as in this case the computational time is similar. Additionally, it could investigate weighting the

training slices with more observations more heavily in POOS cross-validation.

On average, shrinkage methods perform comparable to the traditional models. However, for several
specific variables the effects are significantly positive (Figure , specifically when using with a dataset
rotated using PCA (Figure . Compared to standard econometric models, shrinkage methods seem to
perform relatively well on a limited dataset, as the treatment effect increases when we restrict the amount

of observations (Appendix [H)).

Taking all of this into account, our main conclusion is that in environments with limited data, careful
tuning of models is essential, as the optimal combination of machine learning features is quite specific to

the variable being predicted.

Our results are derived from regressions run on out-of-sample R?’s for several models. As we have seen,
numerous R? values can be deemed outliers. These outliers are the effect of outliers in the forecasts.
To address this concern, literature suggests trimming. Trimming is a method in which a threshold is
set for forecast values, such that forecasts do not exceed certain bounds. This approach might have
mitigated the effects of outliers on our findings. Although in this research we winsorized our data to
address outliers, future research could consider trimming to adjust the effect of outliers before running
regressions. Another extension could be in improving our factor model. We apply a relatively simple
factor approach, using standard PCA. However, possible extensions include Kalman filtering techniques

(Bok et al., |2018]), scaled PCA (Huang et al., |2022)), and supervised PCA (Bair et al.| 2006).

Furthermore, for the non-linear models, we only considered one tree-based model and one kernel-based
model, but the general space of non-linear models is much larger. For instance, examining the performance
of support vector machines, boosted trees, or neural networks would be of significant interest. Our findings
indicate that in a data-sparse environment, specific tailoring of models is necessary. Off-the-shelf machine
learning models generally do not account for the macroeconomic context of the data. Therefore, it might
be beneficial to develop specialized macro machine learning models that are tuned to effectively navigate
this environment. Existing examples of such tailored models include the macro-forest by Goulet Coulombe

(2020) and the hemispherical neural net by |Goulet Coulombe| (2022]).
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Our results may have been influenced by the limited out-of-sample (POOS) test period. Additionally,
the inclusion of the COVID-19 period within this test period could have impacted our findings. We
reflect on this in Appendix Excluding the COVID-19 period from the analysis was not feasible, as
it would have resulted in too few observations for proper regressions. On a larger dataset, it would be
interesting to examine the effects of the business cycle (Goulet Coulombe et al., 2022, |Scheer;, |2022) or

crisis situations (Coulombe et al., 2021b)).

Lastly, in this research, we did not include a setting in which experts select the independent variables used
in the analysis (this would have resulted in a different feature matrix setting). Experts often possess a
deep understanding of the data and underlying patterns. In a data scarce environment, machine learning
models might benefit from some assistance. Therefore, it could be advantageous to pre-select the most
informative variables. Another approach would be to use alternative variable selection methods. Since the
VIF method is based on linear models, it might not be optimal in combination with tree-based methods.
In this case, there could be greater synergy with the tree-based Boruta method (Kursa et al., |2010]). It
would be interesting to explore whether this approach would enhance the performance of our non-linear

models.
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B Feature selection

Prior to training our models, we perform two methods of feature selection/engineering. A traditional
PCA method, to combine as much information in a small set of factors, and a selection procedure based

on the mutual information and the variance inflation factor.

B.1 Factors

Using a dataset with a large amount of features, while at the same time having a limited amount of
observations, can lead to severe overfitting problems when using OLS. The traditional way of tackling

this problem in econometrics is by imposing a latent structure
Xt = AFt + &¢, (14)

meaning we assume that the set of information in our feature set X; can be explained by a (significantly
smaller) amount of factors F;. Here, we follow the approach by McCracken and Ng| (2016)) and estimate
the factors F; by means of principal components analysis (PCA). We then select the first k factors (ordered
by eigenvalue) as features in our dataset, where we will choose k using cross-validation. Taking factors
is a reasonable approach; In macroeconomic datasets we often face the situation where the number of
variables significantly outnumbers the number of observations. Factors then offer a way to compress as
much variation from the original features into a compressed dataset with a limited number of variables
and have been quite successful in forecasting (Coulombe et al., |2021a, |Goulet Coulombe et al., 2022,

Stock and Watson), 2011)).

B.2 Variance Inflation Factor

As an alternative to factors, we perform variable selection using the variable inflation factor (VIF). Here,
we follow a similar approach as|Cheng et al.| (2022)). First, we calculate the mutual information I(X;Y)
between the dependent variable and the features and order the variables from most to least mutual

information,

106Y) = 3 S pla,y) log (M) , (15)

ey st p()p(y)
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with p(z,y) the joint probability distribution of x and y, and p(z) and p(y) the marginal probability
distributions of x and y. These are obtained after discretizing the normalised time series. Hereafter, we
start with the variable having the highest mutual information and add the next one in the list. Then, we
calculate the variance inflation factors (VIF) of the selected variables. The VIF of a variable 4 is defined

as follows,
1

(16)

Here, R? is the R-squared obtained from an OLS regression with variable i as dependent variable and all
other variables as independent variables. If one of the features in the set has a VIF larger than five the
added variable is omitted. We repeat this process until all variables have been tested, or when we have

selected ten features. Again, these features are lagged in the same manner as the ARDI model.
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C Hyperparameters and packages

In this section, we show the grid of the hyperparameters, and the packages used to evaluate these models.

Table [J is split into two parts, the feature matrix, on which the models are evaluated, and the models

itself. Note that the ARDI, ARVIF and AR models are not listed, this is because, apart from the

hyperparameters for the feature matrix, they do not have any hyperparameters that need to be tuned.

We use the following packages in R: glmnet (Friedman et al. 2010), Ranger (Wright and Ziegler, 2017)

and KRLS (Ferwerda et al., [2017)). All the listed models are called using Caret (Kuhn and Max 2008).

In the Table below, \* denotes the minimum value for A for which lasso does not select any variables and

N denotes the number of features in the feature matrix. The other variables are hyperparameters of the

respective models. Finally, for the random forest, we fix the splitting rule on Variance and the number

of trees on 500, which is sufficient to reach a stable prediction. The forest is not tuned, as our grid only

has one value. We experimented with using a larger grid, but this made no notable difference. This is in

line with the literature (Scornet, [2017)).

Table 9: The hyperparameters for our models and feature matrices, with the packages used to call them.

Feature matrix/Models  Grid Package
Feature matrices
Data poor py €{1,3,6,12} -
Diffusion indices (ARDI) p, € {1,3,6,12}, p» € {1,3,6,12}, K € {3,6,10} -
VIF py € {1,3,6,12}, p. € {1,3,6,12} -
B1 py €{1,3,6,12} :
B2 py € {1,3,6,12} R
B3 py €1{1,3,6,12}, p, € {1,3,6,12} -
Models
Lasso A € 10175log10 15A™} (5() steps) glmnet
Ridge A € 10{75:1og10 1537} (50 gteps) glmnet
ElasticNet A € 1017910810 15A™} (30 steps) , o € {0, 1,2,...,10}/10  glmnet
Random Forest minnode.size =3 , mtry = [§]. Ranger
Kernel Ridge Regression o2 € (0.5,1,1.5)N, A € 10{=5+1-3"} (10 steps) . KRLS
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D Traditional models

In our main text we present a relatively simple way of describing the ARDI and AR models, by means
of our different feature matrices Z. However, in the economic literature the AR and ARDI models are

usually presented as follows:

AR.

The auto regressive model is the simplest model in our arsenal. In terms of the dependent variable y;,

we can write it down as follows

Yirh = €+ p(Dy)Yt + €t4n, (17)

where ¢ is a constant and p(p,) is a lag polynomial with a highest order of p,, which is determined by

cross validation.

ARDI.

For the ARDI model, we run a regression on the data rich, diffusion indices feature matrix. In terms of

variables X; and the dependent variable y;, we estimate the following relation

Yirn = ¢+ p(py)yr + p(p2) Fy + €t4hs (18)

Xt = AFt =+ Ug.

In the second equation we impose a linear latent structure, discussed in Section [2] which we estimate
by principal component analysis (PCA). In this model, F} represents a set of K factors. The model is
characterized by three essential hyperparameters: the number of lags of the dependent variable (p,), of
the factors p;, and the number of factors K. These will be fine-tuned through cross-validation. In our

base model we will estimate Equation [17] and Equation [18| using ordinary least squeares (OLS).
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E Robustness

In this Appendix, we show the results of several robustness checks.

E.1 Different transformation

In our main analysis we applied the first-difference transformation to all variables. However, according
to an Augmented Dickey-Fuller test, the AEX-index and production index of industry are also stationary
in log-levels. We suspect that this is due to the test not having enough data to accurately detect the
presence of a unit root, in combination with the messy financial crisis being in the sample, which severely
impacted these two variables. As these two variables are usually expressed in growth rates, and for
the reasons mentioned earlier, we decided in our main analysis to present the results of these variables
using log first-differences. In Figure the results are shown if they are kept in levels. In this case,
the non-linear and shrinkage models perform significantly worse than their counterparts, highlighting the
importance of data transformations. An elaborate study of data transformations in a macroeconomic

context can be found in |Coulombe et al.| (20214)).
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Figure 13: This figure shows the regression results corresponding to the regression in Equation
However, in this case the AEX and industry (production index) variables are left in log-levels. For the
four different features under study (feature matrix, non-linearities, cross-validation, and shrinkage) we
show the value of oy including its 95% confidence interval. We are only controlling for time. For each
variable, the training period starts on a different date (see Table . For all variables the test period is
from 2015MO1 to 2023M12. These results are based on the transformed dataset with winsorizing applied.
The different colours correspond to the seven dependent variables that are being studied. For a specific
colour, the four different horizons are shown as independent lines, where the horizon is increasing going
down the figure (i.e. from h =1, to h = 3, to h = 6, to h = 12).



E.2 Results with backtransformed data

In our main analysis we discuss the results on the transformed dataset. Figure [I4] shows the results using
the backtransformed dataset. Comparing Figure [14] (backtransformed dataset) to Figure [§] (transformed
dataset) we see no significant differences, and thus, the results are robust regardless of which dataset is

analyzed.

g g N
§° J
¢ ‘%
< # .
1
s e —e— i‘
39 3,
g1 I
g
S
-0.2 -0.1 0.0 0.1 0.2 0.3
os (change in Rsq)
AEX industry (production index)
Variable CPI number of sold existing homes

® deposit interest rate @ unemployment rate
® export (value index)

Figure 14: This figure shows the regression results corresponding to the regression in Equation For
the four different features under study (feature matrix, non-linearity’s, cross-validation, and shrinkage)
we show the value of oy including its 95% confidence interval. We are only controlling for time. For each
variable, the training period starts on a different date (see Table . For all variables the test period is
from 2015MO01 to 2023M12. These results are based on the backtransformed dataset with winsorizing
applied. The different colours correspond to the seven dependent variables that are being studied. For a
specific colour, the four different horizons are shown as independent lines, where the horizon is increasing
going down the figure (i.e. from h =1, to h =3, to h =6, to h = 12).
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E.3 Results with non winsorizing the data

In our main analysis we discuss the results on a winsorized dataset. Winsorizing is applied to handle
outliers in the R? values. Figure|l5[shows the results without winsorizing. Comparing Figure (without
winsorizing) to Figure |8 (with winsorizing) we see a few differences. The error bars are larger, and
some treatment effects are more pronounced. However, the general pattern remains consistent for most
variables. Notable differences are observed in the shrinkage panel for the deposit interest rate and the
unemployment rate at the largest horizon, as well as in the non-linearities for unemployment. Overall,

the non-linearities treatment effect is slightly larger, but still not statistically significant.
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Figure 15: This figure shows the regression results corresponding to the regression in Equation For
the four different features under study (feature matrix, non-linearity’s, cross-validation, and shrinkage)
we show the value of oy including its 95% confidence interval. We are only controlling for time. For each
variable, the training period starts on a different date (see Table [2)). For all variables the test period
is from 2015MO01 to 2023M12. These results are based on the transformed dataset with winsorizing not
applied. The different colours correspond to the seven dependent variables that are being studied. For a
specific colour, the four different horizons are shown as independent lines, where the horizon is increasing
going down the figure (i.e. from h =1, to h = 3, to h =6, to h = 12).
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E.4 Excluding the COVID-19 pandemic

In our main analysis, the test period is from 2015MO01 to 2023M12, encompassing the COVID-19 pandemic.
This pandemic significantly impacted the world economy, resulting in distinct patterns in many indicators
in the NL-MD compared to previous periods. The fluctuations in these series complicate forecasting
during the COVID-19 period, and studying a test period that includes this instability period may lead
to unreliable results. Figure shows the results of our analysis using an alternative test period from
2015M01 to 2019M12. Comparing Figure (excluding COVID-19 period) to Figure (including COVID-
19 period), we observe differences primarily related to the deposit interest rate variable. For all variables,
we notice that the effects becomes more pronounced when the COVID-19 period is excluded: treatment
effects and their standard errors increase. This is likely due to the smaller number of observations
compared to the results including the COVID-19 period. This is also why we include the COVID-19
period in our main analysis: excluding this period would not provide enough observations to ensure
reliable results. Although the magnitude of treatment effects change when excluding the COVID-19
period, the same patterns are observable when including it, indicating that the results are robust to
excluding the COVID-19 period. However, further research could investigate the impact of the COVID-

19 period on our results in more detail.
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Figure 16: This figure shows the regression results corresponding to the regression in Equation For
the four different features under study (feature matrix, non-linearity’s, cross-validation, and shrinkage)
we show the value of oy including its 95% confidence interval. We are only controlling for time. For each
variable, the training period starts on a different date (see Table . For all variables the test period
is from 2015MO1 to 2019M12 (i.e. excluding the COVID-19 period). These results are based on the
transformed dataset with winsorizing applied. The different colours correspond to the seven dependent
variables that are being studied. For a specific colour, the four different horizons are shown as independent
lines, where the horizon is increasing going down the figure (i.e. from h = 1, to h = 3, to h = 6, to
h=12).
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F  Outliers per model

In this section we give more information about the outliers in our dataset. We define an outlier as having

an R% # (—1,1). Table 10| describes the outliers as a function of the model.

Table 10: This table describes the outliers in both the backtransformed and transformed data set for
each model, horizon and variable.

Transformed data set Backtransformed data set

Outliers All observations Outliers All observations
(n=15.813) (n = 127.008) (n=6.811) (n = 127.008)
Models
AR 774 (13%) 6,048 166 (3%) 6,048
RF AR 834 (14) 6,048 205 (3%) 6,048
RR AR 762 (13%) 6,048 166 (3%) 6,048
KRR AR 933 (15%) 6,048 230 (4%) 6,048
ARDI 953 (16%) 6,048 270 (5%) 6,048
RF ARDI 786 (13%) 6,048 172 (5%) 6,048
RR ARDI 945 (16%) 6,048 242 (3%) 6,048
KRR ARDI 875 (15%) 6,048 210 (4%) 6,048
ARVIF 823 (14%) 6,048 194 (3%) 6,048
RF ARVIF 824 (14%) 6,048 177 (3%) 6,048
RR ARVIF 792 (13%) 6,048 210 (3%) 6,048
KRR ARVIF 812 (13%) 6,048 227 (4%) 6,048
Lasso 2,693 (15%) 18,144 688 (4%) 18,144
Ridge 2,579 (14%) 18,144 707 (4%) 18,144
ElasticNet 2,641 (15%) 18,144 670 (4%) 18,144
Data
poor (AR) 3,303 (14%) 24,192 767 (3%) 24,192
rich (ARDI) 3,559 (15%) 24,192 894 (4%) 24,192
rich (ARVIF) 3,251 (13%) 24,192 808 (3%) 24,192
rich (B1) 2,919 (16%) 18,144 827 (5%) 18,144
rich (B2) 2,456 (14%) 18,144 573 (3%) 18,144
rich (B3) 2,538 (14%) 18,144 665 (4%) 18,144
Cross-validation
k-fold 8,997 (14%) 63,504 2,238 (4%) 63,504
POOS 9,029 (14%) 63,504 2,296 (4%) 63,504
Horizon
1 2,640 (8%) 31,752 291 (1%) 31,752
3 4,134 (13%) 31,752 398 (1%) 31,752
6 5,069 (16%) 31,752 1,263 (4%) 31,752
12 6,183 (19%) 31,752 2,582 (8%) 31,752
Variable
AEX 4,067 (22%) 18,144 321 (2%) 18,144
CPI 2,249 (12%) 18,144 55 (0%) 18,144
deposit interest rate 1,889 (10%) 18,144 814 (4%) 18,144
export (value index) 2,018 (11%) 18,144 248 (1%) 18,144
industry (production index) 2,749 (15%) 18,144 1,152 (6%) 18,144
number of sold existing homes 1,677 (9%) 18,144 1,784 (10%) 18,144
unemployment rate 3,377 (19%) 18,144 160 (1%) 18,144

7



G RMSEs

G.1 AEX

Maximum and short training period: for AEX both start 2010MO01

Table 11: This table shows for the variable AEX (adm-AEX_hoog) the RMSEs of all the models that
have been run for the different forecasting horizons. For this table the training period starts at 2010MO01.
The test period is from 2015MO01 until 2023M12. For this variable a log transformation is used. The
models are divided in data poor and data rich-models. The first data poor model, the AR, BIC, is
the benchmark model and all other RMSEs are relative to this value. The stars indicate the results of
a Diebold-Mariano test compared to the benchmark model (Hp: no difference in forecasting accuracy
between the two models): * significance at 10% level, *x significance at 5% level, and * x * significance
at 1% level.

Variable transformed Variable backtransformed
Models h=1 h=3 h =6 h =12 h=1 h =3 h=26 h =12
Data poor models
AR, BIC (BM) 0.0317 0.0207 0.0146 0.0088 18.983 37.910 54.755 65.455
AR, k-fold 1 1 0.9541* 0.9966 1 1 0.9459 0.9943
AR, POOS 1.0275* 1.0245 0.9737 1.0102 1.0238** 1.0216 0.9620 1.0032
RF AR, k-fold 1.0365 1.0815** 1.1021* 1.3672** 1.0310 1.0840** 1.1093* 1.2560***
RF AR, POOS 1.0225 1.0955** 1.0684 1.2923** 1.0166 1.0908** 1.0783 1.2230***
RR AR, k-fold 1.0152* 0.9911 0.9524** 1.0535 1.0135**  0.9905 0.9430* 1.0211
RR AR, POOS 1.0239* 0.9969 0.9611 1.0211 1.0218**  0.9986 0.9489 1.0126
KRR AR, k-fold 1.0381 1.0871 1.2689***  1.7560***  1.0300 1.1069* 1.3130***  1.6270***
KRR AR, POOS 1.0732 1.1435** 1.0712 1.3923* 1.0714 1.1159** 1.0974 1.2456**
Data rich models
ARDI, k-fold 1.0721 1.1346*** 1.2094* 1.3721 1.0598 1.1296** 1.2022 1.1636
ARDI, POOS 1.0667* 1.1822***  1.4902* 1.5420* 1.0644 1.1983** 1.4123* 1.3194*
RF ARDI, k-fold 1.0967** 1.1328** 1.1072 1.2766* 1.1018* 1.1430* 1.0914 1.1575*
RF ARDI, POOS 1.1129**  1.1375** 1.2034***  1.2558* 1.1064* 1.1403* 1.1660***  1.1387
RR ARDI, k-fold 1.0438 1.1020* 1.2032 1.6219* 1.0540 1.0950 1.1266 1.4304*
RR ARDI, POOS 1.0567* 1.1277** 1.3831* 1.2909 1.0557 1.1191 1.2922* 1.1567
KRR ARDI, k-fold 1.0416** 1.1027** 1.4508** 1.6134** 1.0329* 1.0696* 1.2988* 1.4213**
KRR ARDI, POOS 1.0214 1.1255%** 1.1583** 1.1327 1.0023 1.1128%** 1.1204** 1.0475
ARVIF, k-fold 1.0826 1.1983*** 1.3220* 1.4433** 1.0765 1.1956** 1.3271 1.2930***
ARVIF, POOS 1.0826 1.2499*** 1.3460* 1.4053* 1.0765 1.2460*** 1.3528* 1.2634**
RF ARVIF, k-fold 1.0364 1.2171%%*  1.4263***  1.3845** 1.0258 1.2121%%*  1.4417** 1.2671***
RF ARVIF, POOS 1.0096 1.2324*** 1.2220** 1.4124%** 1.0082 1.2223*** 1.1945** 1.3274***
RR ARVIF, k-fold 1.0371 1.1601 1.0064 1.3459 1.0441 1.1790 0.9799 1.2275**
RR ARVIF, POOS 1.0413 1.1508 1.0505 1.1388* 1.0491 1.1665 1.0290 1.1225**
KRR ARVIF, k-fold 1.0169 1.1352* 1.1809** 1.5681* 1.0205 1.1094** 1.1403** 1.4671*
KRR ARVIF, POOS 1.0509 1.0165 1.0549 1.4598* 1.0683 1.0093 1.0367 1.3719*
Lasso (B1), k-fold 1.0173 1.2614** 2.1278 2.0361** 1.0184 1.2949** 1.9762 1.8839*
Lasso (B2), k-fold 1.0151 1.0191 1.1658 1.2011 1.0219 1.0228 1.2011 1.1592
Lasso (B3), k-fold 1.0401 1.0568* 1.1666™** 1.2859* 1.0301 1.0497 1.1281%** 1.2592
Lasso (B1), POOS 1.0708 1.1814** 2.0471* 1.3617** 1.0893 1.1621* 1.9457* 1.3212**
Lasso (B2), POOS 1.0111 1.0388 1.0666 1.0450 1.0201 1.0623 1.0842 1.0359
Lasso (]33)7 POOS 1.0220 1.0429 1.2315%** 1.2135* 1.0254 1.0665 1.2179** 1.1454%**
Ridge (B1), k-fold 1.0801 1.1506* 1.4621 1.3225 1.0939 1.1701* 1.4581 1.3036
Ridge (B2), k-fold 1.0241 0.9506 0.9911 1.0905 1.0256 0.9342 1.0054 1.0955
Ridge (B3), k-fold 1.0005 0.9821 0.9831 1.0860 1.0046 0.9790 0.9683 1.1103
Ridge (B1), POOS 1.0939 1.1329 1.4985 1.3695 1.1060 1.1537 1.4944 1.3438
Ridge (B2), POOS 1.0386 0.9661 0.9457 1.0885 1.0396 0.9693 0.9338 1.0998
Ridge (B3), POOS 1.0049 0.9835 0.9862 1.1082 1.0086 0.9810 0.9714 1.1406
ElasticNet ( 1), k-fold 1.0108 1.1237 2.1770* 2.1031** 1.0133 1.1155 2.0601* 1.9256*
ElasticNet (B2), k-fold 1.0145 0.9934 1.0157 1.1874 1.0195 0.9777 1.0204 1.1553
ElasticNet (B3), k-fold 1.0006 1.0831* 1.1432** 1.2693** 0.9986 1.0931* 1.0995* 1.1878***
ElasticNet (B1), POOS 1.0741 1.1868** 2.0544* 1.2740 1.0907 1.1687* 1.9569* 1.1794
ElasticNet (B2), POOS 1.0119 1.0473 1.0294 1.0286 1.0214 1.0673 1.0412 1.0301
ElasticNet (B3), POOS 1.0525**  1.0394 1.2282***  1.2288** 1.0696**  1.0620 1.2215** 1.1652***
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G.2 CPI

Maximum training period: for CPI this starts in 1999MO01

Table 12: This table shows for the variable CPI (ind_CPI_totaal) the RMSEs of all the models that have
been run for the different forecasting horizons. For this table the training period starts at 1999MO01. The
test period is from 2015MO01 until 2023M12. For this variable a first-difference log transformation is used.

The models are divided in data poor and data rich-models.

The first data poor model, the AR, BIC,

is the benchmark model and all other RMSEs are relative to this value. The stars indicate the results
of a Diebold-Mariano test compared to the benchmark model (Hy: no difference in forecasting accuracy
between the two models): * significance at 10% level, *x significance at 5% level, and * x * significance

at 1% level.

Variable transformed

Variable backtransformed

Models h=1 h=3 h =6 h=12 h=1 h =3 h =26 h =12

Data poor models
AR, BIC (BM) 0.0084 0.0057 0.0036 0.0025 1.0317 2.1186 2.6812 3.5909
AR, k-fold 0.8814 0.7841 0.7928 1.0016 0.8466 0.7457 0.7624 1.0044
AR, POOS 1.0000 1.0000 1.0454 1.0023 1.0000 1.0000 1.0443 1.0017
RF AR, k-fold 0.8703* 0.9035** 0.9596 0.9959 0.8584* 0.8949** 0.9492 0.9791
RF AR, POOS 0.8681* 0.9081** 0.9963 0.9987 0.8566* 0.8995** 0.9901 0.9883
RR AR, k-fold 0.9321**  0.9465* 0.9598 0.9948 0.9251**  0.9408* 0.9533 0.9897
RR AR, POOS 0.9458**  0.9737* 1.0237 0.9922 0.9400**  0.9709* 1.0172 0.9843
KRR AR, k-fold 0.8338* 0.7510 0.8512 1.0231 0.8165* 0.7240 0.8144 1.0041
KRR AR, POOS 0.8370* 0.7529 0.8374 0.9906 0.8198* 0.7253 0.8002 0.9765

Data rich models
ARDI, k-fold 0.8980 0.7652* 0.7965* 0.8827 0.8646 0.7461* 0.7862* 0.8740
ARDI, POOS 0.9715 0.8239 0.8354**  0.8889 0.9715 0.8126 0.8282* 0.8785
RF ARDI, k-fold 0.8742**  0.8524***  (0.8978* 0.9974 0.8646**  0.8463***  0.8850 0.9926
RF ARDI, POOS 0.8691**  0.8451***  0.8722* 0.9732 0.8621**  0.8389***  (0.8612* 0.9698
RR ARDI, k-fold 0.9361**  0.8507** 0.8914**  0.9700 0.9323**  0.8420* 0.8892**  0.9601
RR ARDI, POOS 0.9265**  0.8778* 0.8237* 1.0323 0.9231**  0.8737* 0.8122* 1.0248
KRR ARDI, k-fold 0.7920**  0.7397* 0.8373 0.9014 0.7768**  0.7176 0.8017 0.8879
KRR ARDI, POOS 0.7973**  0.7558 0.8303 0.9699 0.7820**  0.7322 0.7973 0.9550
ARVIF, k-fold 0.8636 0.8976 1.0210 1.0561 0.8308 0.8625 1.0241 1.0766
ARVIF, POOS 1.0043 1.0273 1.0456 1.0539 1.0025 1.0253 1.0513 1.0744
RF ARVIF, k-fold 0.8247**  0.8344** 0.9579 0.9896 0.8108**  0.8229** 0.9487 0.9762
RF ARVIF, POOS 0.8057**  0.8368** 0.9324 1.0053 0.7906**  0.8238** 0.9190 0.9914
RR ARVIF, k-fold 0.8411**  0.8316* 0.9111* 1.0028 0.8257**  0.8174* 0.9047* 1.0062
RR ARVIF, POOS 0.8702* 0.9529 0.9332 0.9884 0.8539* 0.9432 0.9337 0.9916
KRR ARVIF, k-fold 0.8349* 0.7212* 0.8386 0.9581 0.8115* 0.6993* 0.8064 0.9449
KRR ARVIF, POOS 0.8079**  0.7630 0.8270 0.9687 0.7916**  0.7384 0.7932 0.9555
Lasso (B1), k-fold 0.8900**  0.8312** 1.0019 0.9172 0.8840**  0.8245** 1.0031 0.9167
Lasso (B2), k-fold 0.8783**  (0.8895** 0.9424 0.9490 0.8701**  0.8840* 0.9406 0.9527
Lasso (B3), k-fold 0.9121 0.8024 0.9573 0.9954 0.8912* 0.7784 0.9460 0.9793
Lasso (B1), POOS 0.8674**  0.8737* 0.9621 0.9162 0.8578**  0.8647* 0.9730 0.9032
Lasso (B2), POOS 0.8676**  0.9290 0.8024 0.9373 0.8581**  0.9240 0.7784 0.9199
Lasso (B3), POOS 0.9015 0.8002 0.9941 1.0117 0.8754 0.7774 0.9851 0.9933
Ridge (B1), k-fold 0.9529 0.8661 0.9382 0.8833 0.9398 0.8540 0.9421* 0.8821
Ridge (B2), k-fold 0.9333 0.8156 0.9011 0.9304 0.9155 0.7972 0.8921 0.9284
Ridge (B3), k-fold 0.8364* 0.7075* 0.7932 0.9437 0.8067* 0.6782* 0.7661 0.9317
Ridge (B1), POOS 1.0142 0.8402** 0.8894**  0.9201 1.0069 0.8287** 0.8899**  0.9245
Ridge (B2), POOS 0.9959 0.8558 0.8038 0.9147 0.9850 0.8397 0.7744 0.9080
Ridge (B3), POOS 0.8504 0.7231 0.7984 0.9518 0.8176* 0.6934 0.7697 0.9344
ElasticNet (B1), k-fold 0.8872**  0.8204** 0.9869 0.9081 0.8814**  0.8131** 0.9861 0.9065
ElasticNet (B2), k-fold 0.8906**  0.8951* 0.8111 0.9459 0.8837**  0.8895* 0.7931 0.9478
ElasticNet (B3), k-fold 0.8944 0.8452 0.9089 0.9924 0.8717* 0.8257 0.8890 0.9764
ElasticNet (B1), POOS  0.8699**  0.8698* 0.9590 0.9201 0.8602**  0.8611* 0.9705 0.9076
ElasticNet (B2), POOS  0.8682**  0.9283 0.8111 0.9361 0.8587**  0.9236 0.7867 0.9183
ElasticNet (B3), POOS  0.8984 0.8001 0.9997 1.0006 0.8731* 0.7783 0.9901 0.9821
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Short training period: starts in 2010MO01

Table 13: This table shows for the variable CPI (ind_CPI_totaal) the RMSEs of all the models that have
been run for the different forecasting horizons. For this table the training period starts at 2010M01. The
test period is from 2015M01 until 2023M12. For this variable a first-difference log transformation is used.
The models are divided in data poor and data rich-models. The first data poor model, the AR, BIC,
is the benchmark model and all other RMSEs are relative to this value. The stars indicate the results
of a Diebold-Mariano test compared to the benchmark model (Hy: no difference in forecasting accuracy
between the two models): * significance at 10% level, *x significance at 5% level, and * x * significance
at 1% level.

Variable transformed Variable backtransformed
Models h=1 h=3 h =6 h=12 h=1 h=3 h =6 h =12
Data poor models
AR, BIC (BM) 0.0079 0.0050 0.0039  0.0027 0.9339 1.7880 2.7617 3.9178
AR, k-fold 0.9436***  0.9619 0.7857  0.9849 0.9540***  0.9725 0.7874  0.9812
AR, POOS 1.1194 1.2511 1.0947 1.0042 1.1704 1.3254 1.1443 1.0036
RF AR, k-fold 0.9346 1.0294 0.9355  0.9465 0.9624 1.0705 0.9545  0.9309
RF AR, POOS 0.9280 1.0391 0.8924 0.9725 0.9552 1.0820 0.9121  0.9630
RR AR, k-fold 1.0162 1.1284 1.0382 0.9786 1.0538 1.1856 1.0818 0.9664
RR AR, POOS 1.0099 1.1936 1.0503 0.9738 1.0459 1.2593 1.0948 0.9633
KRR AR, k-fold 0.8880***  0.8655** 0.8227  0.9593 0.9064***  0.8756**  0.8165 0.9328
KRR AR, POOS 0.8975***  0.8992* 0.8099 0.9341 0.9137***  0.9091* 0.8050  0.9098
Data rich models
ARDI, k-fold 0.9320 0.9001 0.7981 0.8445 0.9516 0.9314 0.8267 0.8376
ARDI, POOS 1.0179 1.0666 1.0249 1.0716 1.0560 1.1193 1.0940  1.0920
RF ARDI, k-fold 0.9285 0.9786 0.8518 1.0232 0.9574 1.0185 0.8759  1.0216
RF ARDI, POOS 0.9179 0.9776 0.8666  1.0315 0.9463 1.0179 0.8899 1.0412
RR ARDI, k-fold 0.9339 1.0197 0.8054  0.9889 0.9629 1.0668 0.8323  1.0020
RR ARDI, POOS 0.9704 1.0228 0.8733  1.0399 1.0007 1.0668 0.9026 1.0625
KRR ARDI, k-fold 0.8605***  0.7985** 0.7109  0.9385 0.8817***  0.8110** 0.7084 0.9109
KRR ARDI, POOS 0.8709***  (0.8431** 0.7669  0.9471 0.8945***  0.8565**  0.7667  0.9234
ARVIF, k-fold 1.1052 0.9756 0.9267 0.9961 1.1392 0.9929 0.9675 0.9831
ARVIF, POOS 1.1409 1.1642 0.9628 1.0100 1.1645 1.2257 1.0047  0.9958
RF ARVIF, k-fold 0.9215 0.9566 0.8438  1.0082 0.9532 0.9897 0.8641  1.0227
RF ARVIF, POOS 0.9219 0.9333 0.8092 1.0389 0.9535 0.9658 0.8237  1.0601
RR ARVIF, k-fold 0.9445 1.0497 0.8360 1.1437 0.9692 1.0917 0.8709 1.1693
RR ARVIF, POOS 0.9609 1.1086 0.8110 1.1162 0.9792 1.1604 0.8338  1.1379
KRR ARVIF, k-fold 0.8705***  0.8203***  0.8260  0.8647 0.8880***  0.8326**  0.8279  0.8464
KRR ARVIF, POOS 0.8811***  0.7954** 0.8420 0.9576 0.8985***  0.8085**  0.8420 0.9323
Lasso (B1), k-fold 0.9558 0.9288 0.8125  0.8358 0.9902 0.9695 0.8564  0.8476
Lasso (B2), k-fold 0.9346 0.9955 0.8123  0.9720 0.9660 1.0403 0.8334 0.9694
Lasso (B3), k-fold 0.9185** 0.9038 0.8370  1.0543 0.9376 0.9267 0.8470  1.0579
Lasso (B1), POOS 0.9615 0.8741 0.8157 0.9371 0.9960 0.9037 0.8562  0.9406
Lasso (B2), POOS 0.9094 0.8947 0.7832 0.9735 0.9368 0.9249 0.8036  0.9520
Lasso (B3), POOS 0.9059** 0.8952 0.8019  0.9595 0.9230* 0.9217 0.8192  0.9409
Ridge (B1), k-fold 1.0402 0.8994 0.8267 0.9128 1.0643 0.9263 0.8671 0.9176
Ridge (B2), k-fold 0.9497 0.9605 0.8799  0.9655 0.9607 0.9837 0.9023  0.9552
Ridge (B3), k-fold 0.9442** 0.9129** 0.8037 0.9412 0.9475** 0.9158**  0.7921 0.9194
Ridge (B1), POOS 1.1386 0.9263 0.8274 0.8644 1.1674 0.9547 0.8666  0.8742
Ridge (B2), POOS 0.9745 0.9623 0.8562  0.9462 0.9884 0.9874 0.8771  0.9328
Ridge (B3), POOS 0.9469** 0.9094** 0.8025 0.9436 0.9509** 0.9118**  0.7911 0.9218
ElasticNet (B1), k-fold 0.9512 0.9353 0.8336  0.8603 0.9846 0.9735 0.8780  0.8733
ElasticNet (B2), k-fold 0.9206 0.9809 0.9521  0.9403 0.9504 1.0238 1.0000 0.9300
ElasticNet (B3), k-fold 0.9112** 0.9013 0.7682 1.0376 0.9294* 0.9265 0.7739  1.0364
ElasticNet (B1), POOS  0.9870 0.9277 0.8161  0.9401 1.0238 0.9659 0.8562  0.9434
ElasticNet (B2), POOS 0.9104 0.9899 0.8531 0.9304 0.9376 1.0352 0.8779  0.9053
ElasticNet (B3), POOS  0.9096** 0.8565 0.7799  0.9400 0.9277 0.8788 0.7943 0.9192
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G.3 Deposit interest rate

Maximum training period: for deposit interest rate this starts in 2002M01

Table 14: This table shows for the variable deposit interest rate (rwk_depositorente) the RMSEs of all
the models that have been run for the different forecasting horizons. For this table the training period
starts at 2002M01. The test period is from 2015M01 until 2023M12. For this variable a first-difference
level transformation is used. The models are divided in data poor and data rich-models. The first data
poor model, the AR, BIC, is the benchmark model and all other RMSEs are relative to this value. The
stars indicate the results of a Diebold-Mariano test compared to the benchmark model (Hy: no difference
in forecasting accuracy between the two models): * significance at 10% level, #x significance at 5% level,
and * * * significance at 1% level.

Variable transformed Variable backtransformed
Models h=1 h =38 h=6 h =12 h=1 h=3 h=6 h =12
Data poor models
AR, BIC (BM) 0.0741 0.0727 0.0948 0.0958 0.0741 0.2181 0.5689 1.1500
AR, k-fold 1.0183 1.0000 0.9706 1.0000 1.0183 1.0000 0.9706 1.0000
AR, POOS 1.1156* 1.0013 0.9710 1.0004 1.1156* 1.0013 0.9710 1.0004
RF AR, k-fold 1.1015 1.2775 1.0034 0.9590 1.1015 1.2775 1.0034 0.9590
RF AR, POOS 1.0687 1.2862 1.0518 1.0680 1.0687 1.2862 1.0518 1.0680
RR AR, k-fold 0.9956 1.0619 1.0011 1.0517 0.9956 1.0619 1.0011 1.0517
RR AR, POOS 1.0154 1.0591 1.0005 1.0089 1.0154 1.0591 1.0005 1.0089
KRR AR, k-fold 1.3277* 1.3667** 1.0599 0.9179 1.3277* 1.3667** 1.0599 0.9179
KRR AR, POOS 2.4969 1.3476* 1.0863 0.9571 2.4969 1.3476* 1.0863 0.9571
Data rich models
ARDI, k-fold 0.9953 0.9987 1.2558* 1.7312 0.9953 0.9987 1.2558* 1.7312
ARDI, POOS 1.1032 1.1446* 1.1935* 1.7025 1.1032 1.1446* 1.1935* 1.7025
RF ARDI, k-fold 1.1800 1.5940 1.8725 1.0078 1.1800 1.5940 1.8725 1.0078
RF ARDI, POOS 1.2130 2.0552 1.8024 1.0418 1.2130 2.0552 1.8024 1.0418
RR ARDI, k-fold 0.9609 1.0707 1.2107** 1.6185 0.9609 1.0707 1.2107** 1.6185
RR ARDI, POOS 1.0166 1.1426 1.1674* 1.6153 1.0166 1.1426 1.1674* 1.6153
KRR ARDI, k-fold 1.6562** 1.7111** 1.3364** 1.3311 1.6562** 1.7111** 1.3364** 1.3311
KRR ARDI, POOS 1.5688**  1.6191* 1.1990 1.0690 1.5688**  1.6191* 1.1990 1.0690
ARVIF, k-fold 1.1092 1.0906 1.0931 0.8004 1.1092 1.0906 1.0931 0.8004
ARVIF, POOS 1.0996 1.1007 1.1065 0.8060 1.0996 1.1007 1.1065 0.8060
RF ARVIF, k-fold 0.9865 1.2145 1.2918* 0.6892 0.9865 1.2145 1.2918* 0.6892
RF ARVIF, POOS 1.0175 1.2352 1.3020* 0.7003 1.0175 1.2352 1.3020* 0.7003
RR ARVIF, k-fold 1.0042 1.0912 0.9692 0.8758 1.0042 1.0912 0.9692 0.8758
RR ARVIF, POOS 1.0086 1.1012 1.1421 0.8749 1.0086 1.1012 1.1421 0.8749
KRR ARVIF, k-fold 1.4465**  1.4812* 1.2291* 1.0550 1.4465**  1.4812* 1.2291* 1.0550
KRR ARVIF, POOS 1.6196**  1.6177* 1.2000 1.0581 1.6196**  1.6177* 1.2000 1.0581
Lasso (B1), k-fold 1.0154 1.2588* 1.4489** 1.1281 1.0154 1.2588* 1.4489** 1.1281
Lasso (B2), k-fold 1.0943 1.2025** 1.4003***  0.9027 1.0943 1.2025** 1.4003***  0.9027
Lasso (]33)7 k-fold 1.0921 1.4592%** 1.3133** 1.1662*** 1.0921 1.4592%** 1.3133** 1.1662%**
Lasso (B1), POOS 1.0567 1.0871 1.1024 1.0594 1.0567 1.0871 1.1024 1.0594
Lasso (B2), POOS 1.2153 1.5386* 1.2070 1.0637 1.2153 1.5386* 1.2070 1.0637
Lasso (B3), POOS 1.5488**  1.5855* 1.2113 1.1004 1.5488**  1.5855* 1.2113 1.1004
Ridge (B1), k-fold 1.0096 1.3351** 1.3448** 0.8641 1.0096 1.3351** 1.3448** 0.8641
Ridge (B2), k-fold 1.1573 1.4712* 1.3281*** 1.0647 1.1573 1.4712* 1.3281°*** 1.0647
Ridge (B3), k-fold 1.4554** 1.3824** 1.2145* 1.1063* 1.4554** 1.3824** 1.2145* 1.1063*
Ridge (Bl), POOS 0.9950 1.1312* 1.2815** 1.2414 0.9950 1.1312* 1.2815** 1.2414
Ridge (B2), POOS 1.1510 1.2885* 1.1389** 1.1128 1.1510 1.2885* 1.1389** 1.1128
Ridge (B3), POOS 1.6147** 1.5969* 1.2307 1.1161 1.6147** 1.5969* 1.2307 1.1161
ElasticNet (B1), k-fold 1.0158 1.3484* 1.4234***  1.1050 1.0158 1.3484* 1.4234***  1.1050
ElasticNet (B2), k-fold 1.0632 1.1530* 1.3555%**  0.8463 1.0632 1.1530* 1.3555***  (0.8463
ElasticNet (B3), k-fold 1.0889 1.2763** 1.3275** 1.1672* 1.0889 1.2763** 1.3275** 1.1672*
ElasticNet (B1), POOS 1.1222 1.1544 1.0890 1.1948 1.1222 1.1544 1.0890 1.1948
ElasticNet (B2), POOS 1.1870 1.5322* 1.2133 1.0807 1.1870 1.5322* 1.2133 1.0807
ElasticNet (B3), POOS  1.5227* 1.5634* 1.2106 1.0870 1.5227* 1.5634* 1.2106 1.0870
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Short training period: starts in 2010MO01

Table 15: This table shows for the variable deposit interest rate (rwk_depositorente) the RMSEs of all
the models that have been run for the different forecasting horizons. For this table the training period
starts at 2010MO01. The test period is from 2015MO01 until 2023M12. For this variable a first-difference
level transformation is used. The models are divided in data poor and data rich-models. The first data
poor model, the AR, BIC, is the benchmark model and all other RMSEs are relative to this value. The
stars indicate the results of a Diebold-Mariano test compared to the benchmark model (Hy: no difference
in forecasting accuracy between the two models): * significance at 10% level, #x* significance at 5% level,
and * % * significance at 1% level.

Variable transformed Variable backtransformed
Models h=1 h=3 h=6 h=12 h=1 h=3 h =6 h =12
Data poor models
AR, BIC (BM) 0.0964 0.0886 0.1039  0.0950 0.0964 0.2658 0.6235  1.1407
AR, k-fold 0.8857 1.0128 0.9999  1.0000 0.8857 1.0128 0.9999  1.0000
AR, POOS 1.0603 1.0129 1.0089  1.0000 1.0603 1.0129 1.0089  1.0000
RF AR, k-fold 0.8385 1.0297 1.1103 1.0677 0.8385 1.0297 1.1103 1.0677
RF AR, POOS 0.8265 1.0598 1.1337  1.0664 0.8265 1.0598 1.1337 1.0664
RR AR, k-fold 0.8598 0.9173 1.0113  1.0368 0.8598 0.9173 1.0113  1.0368
RR AR, POOS 0.9015 0.9798 1.0032  1.0203 0.9015 0.9798 1.0032  1.0203
KRR AR, k-fold 1.2769 1.2313* 1.0499 1.1349 1.2769 1.2313* 1.0499 1.1349
KRR AR, POOS 1.4553 1.2341 1.0650  1.0800 1.4553 1.2341 1.0650  1.0800
Data rich models
ARDI, k-fold 0.8370 0.7472* 0.7639  0.8397 0.8370 0.7472* 0.7639  0.8397
ARDI, POOS 0.9622 0.8529 0.8519  0.8587 0.9622 0.8529 0.8519  0.8587
RF ARDI, k-fold 0.7852 0.9366 0.9574  0.9925 0.7852 0.9366 0.9574  0.9925
RF ARDI, POOS 0.8822 0.9604 0.8956  1.0002 0.8822 0.9604 0.8956  1.0002
RR ARDI, k-fold 0.7973 0.7694 0.8754  0.9037 0.7973 0.7694 0.8754  0.9037
RR ARDI, POOS 0.8340 0.9252 0.9164 0.9609 0.8340 0.9252 0.9164 0.9609
KRR ARDI, k-fold 1.2357 1.2676* 1.0706 1.0071 1.2357 1.2676* 1.0706 1.0071
KRR ARDI, POOS 1.1344 1.2856* 1.0506 1.0227 1.1344 1.2856* 1.0506 1.0227
ARVIF, k-fold 0.8485 0.7856 1.0326  1.0093 0.8485 0.7856 1.0326  1.0093
ARVIF, POOS 0.9874 0.7648 1.0015 1.0056 0.9874 0.7648 1.0015 1.0056
RF ARVIF, k-fold 0.7047 0.7759*  0.9437 0.9895 0.7047 0.7759*  0.9437 0.9895
RF ARVIF, POOS 0.7135 0.8363 0.9385 0.9454 0.7135 0.8363 0.9385 0.9454
RR ARVIF, k-fold 0.6802*  0.8417 0.9490 0.9821 0.6802*  0.8417 0.9490 0.9821
RR ARVIF, POOS 0.7136 0.8467 0.8885 0.9756 0.7136 0.8467 0.8885 0.9756
KRR ARVIF, k-fold 1.1397 1.2599*  1.0504 1.0270 1.1397 1.2599* 1.0504 1.0270
KRR ARVIF, POOS 1.1753 1.2730* 1.0524 1.0237 1.1753 1.2730* 1.0524 1.0237
Lasso (B1), k-fold 0.8553 0.7909* 0.7766 1.0669 0.8553 0.7909* 0.7766 1.0669
Lasso (B2), k-fold 0.8881 1.0668 0.9232  0.9397 0.8881 1.0668 0.9232 0.9397
Lasso (B3), k-fold 0.9368 1.0240 0.9151 1.0190 0.9368 1.0240 0.9151 1.0190
Lasso (B1), POOS 0.8205 0.8988 0.9464 0.9705 0.8205 0.8988 0.9464  0.9705
Lasso (B2), POOS 0.8702 1.2779*  1.0080 1.0236 0.8702 1.2779*  1.0080 1.0236
Lasso (B3), POOS 0.9993 1.0863 0.9378 1.0160 0.9993 1.0863 0.9378 1.0160
Ridge (B1), k-fold 0.7695 0.7714*  0.7939 1.0972 0.7695 0.7714*  0.7939 1.0972
Ridge (B2), k-fold 0.9061 1.0198 1.0101 0.9997 0.9061 1.0198 1.0101 0.9997
Ridge (B3), k-fold 1.2268 1.2517* 1.0232 1.0194 1.2268 1.2517* 1.0232 1.0194
Ridge (B1), POOS 0.7691 0.7408*  0.7944  1.0350 0.7691 0.7408*  0.7944 1.0350
Ridge (B2), POOS 0.9106 1.0280 1.0092 1.0003 0.9106 1.0280 1.0092 1.0003
Ridge (B3), POOS 1.2385 1.2660*  1.0404 1.0137 1.2385 1.2660* 1.0404 1.0137
ElasticNet (B1), k-fold 0.8406 0.7631*  0.8749 1.0189 0.8406 0.7631* 0.8749 1.0189
ElasticNet (B2), k-fold 0.8765 1.0924 1.0213  1.0006 0.8765 1.0924 1.0213  1.0006
ElasticNet (B3), k-fold 0.9895 1.0562 0.9231 1.0179 0.9895 1.0562 0.9231 1.0179
ElasticNet (B1), POOS  0.8185 0.9035 0.9149 0.9783 0.8185 0.9035 0.9149 0.9783
ElasticNet (B2), POOS 0.8828 1.1276 1.0092 1.0202 0.8828 1.1276 1.0092 1.0202
ElasticNet (B3), POOS 1.0755 1.2661* 0.9628  1.0088 1.0755 1.2661* 0.9628  1.0088

82



G.4 Export (value index)

Maximum training period: for export (value index) this starts in 1998MO01

Table 16: This table shows for the variable export (value index) (int_uitvoer_waarde_index) the RMSEs of
all the models that have been run for the different forecasting horizons. For this table the training period
starts at 1998MO01. The test period is from 2015MO01 until 2023M12. For this variable a first-difference
log transformation is used. The models are divided in data poor and data rich-models. The first data
poor model, the AR, BIC, is the benchmark model and all other RMSEs are relative to this value. The
stars indicate the results of a Diebold-Mariano test compared to the benchmark model (Hy: no difference
in forecasting accuracy between the two models): * significance at 10% level, #x* significance at 5% level,
and * x * significance at 1% level.

Variable transformed Variable backtransformed
Models h=1 h =3 h =26 h=12 h=1 h=3 h=6 h =12
Data poor models
AR, BIC (BM) 0.0371 0.0219 0.0139 0.0093 4.7688 8.4512  11.170 15.323
AR, k-fold 1 1 0.9803 0.9540 1 1 0.9825 0.9339
AR, POOS 1 1 0.9644 0.9901 1 1 0.9502 0.9692
RF AR, k-fold 0.9859 0.8983* 0.9834 0.9452 1.0032 0.9192 1.0242 0.8797
RF AR, POOS 0.9835 0.8911*  0.9644 1.1479*  0.9995 0.9129  1.0055 1.1309
RR AR, k-fold 0.9874 0.9882 0.9682 0.9320 0.9918 0.9874  0.9737 0.9150
RR AR, POOS 0.9870 0.9908 0.9881 0.9820 0.9914 0.9905 0.9866 0.9639
KRR AR, k-fold 0.9277 0.9617 0.9784 1.1023 0.9357 0.9906 1.0175 1.0256
KRR AR, POOS 0.9339 1.0171 0.9585 1.0785 0.9447 1.0512  0.9605 1.1097
Data rich models
ARDI, k-fold 0.9744 0.9436 1.1228 1.0771 0.9560 0.9282 1.1567 1.0306
ARDI, POOS 1.0636 0.9727 1.3885**  1.0993 1.1396 0.9559  1.3932* 1.0574
RF ARDI, k-fold 1.0081 0.9410 1.0572 0.9499 1.0169 0.9549 1.0625 0.8761
RF ARDI, POOS 0.9858 0.9307 0.9919 0.9804 1.0025 0.9444  0.9960 0.9346
RR ARDI, k-fold 1.0399 1.0466 1.1054 1.1220 1.1052 1.0355 1.0559 1.0445
RR ARDI, POOS 0.9662 1.0188 1.1059 1.0686 0.9729 1.0162 1.0654 1.0409
KRR ARDI, k-fold 1.1161 1.0448 1.0773 1.0410 1.2246* 1.1012 1.1231 1.0109
KRR ARDI, POOS 1.1855* 1.0294 0.9744 0.9244 1.3067** 1.0921 0.9839 0.9204
ARVIF, k-fold 0.9060 1.0178 1.0282 1.0654 0.8989 1.0562  1.0948 1.0438
ARVIF, POOS 0.9060 1.0289 1.0287 1.0786 0.8989 1.0709 1.1102 1.0685
RF ARVIF, k-fold 0.9557 0.9754 0.9611 0.8895 0.9687 1.0075  0.9657 0.8416
RF ARVIF, POOS 0.9478 0.9186 0.9934 0.9978 0.9643 0.9351 1.0034 0.9609
RR ARVIF, k-fold 0.9428 0.9734 1.0075 1.0321 0.9560 0.9789 0.9833 0.9672
RR ARVIF, POOS 0.9169 0.9559 1.0439 0.9934 0.9087 0.9754 1.0180 0.9688
KRR ARVIF, k-fold 1.1293 1.0359 0.9560 1.0265 1.2423**  1.1228 0.9719 0.9823
KRR ARVIF, POOS 1.0606 1.0718 0.9957 1.0464 1.1383 1.1507 1.0033 0.9895
Lasso (B1), k-fold 0.9976 0.9989 1.2338 0.9982 0.9770 0.9792 1.2271 0.9664
Lasso (B2), k-fold 1.0492 0.9983 1.1706 0.9669 1.0511 0.9832  1.2862 1.0523
Lasso (B3), k-fold 0.9798 1.0251 1.0858* 1.0353 0.9610 1.0433  1.0960* 1.0561
Lasso (B1), POOS 1.0091 0.9788 1.3275* 0.9361 0.9846 0.9704 1.3369* 0.9071
Lasso (B2), POOS 1.0310 1.0371 1.1181 1.0552 1.0204 1.0237 1.2039 1.1220
Lasso (B3), POOS 1.0132 1.0568 1.0218 0.9951 1.0081 1.0773  0.9962 0.9722
Ridge (B1), k-fold 1.0148 0.9957 1.2487 1.1006 0.9905 0.9917 1.2670 1.0567
Ridge (B2), k-fold 1.0777 1.0106 1.0765 0.8518 1.0529 1.0074 1.1424 0.8607
Ridge (B3), k-fold 1.1749** 1.0918 1.0690 0.9497 1.1664** 1.1226 1.1062 0.9614
Ridge (B1), POOS 1.0049 0.9862 1.2355 1.0925 0.9829 0.9856  1.2688 1.0511
Ridge (B2), POOS 1.0542 1.0124 1.0105 0.9720 1.0394 1.0115 1.0788 1.0211
Ridge (B3), POOS 1.1724**  1.0951 1.0603 1.0003 1.1664**  1.1191 1.1052 1.0167

ElasticNet (B1), k-fold  0.9823 0.9946 1.2783 1.1112 0.9624 0.9926  1.2939 1.0750
ElasticNet (B2), k-fold 1.0401 1.0294 1.0859 0.9139 1.0326 1.0114 1.1730 0.9403
ElasticNet (B3), k-fold 1.0386 0.9697 1.0676 1.0187 1.0555 1.0020 1.0746 1.0140
ElasticNet (B1), POOS  0.9992 0.9818 1.2875* 0.9773 0.9751 0.9769  1.3012 0.9370
ElasticNet (B2), POOS 1.0556 1.0328 1.0505 1.0515 1.0505 1.0198  1.1090 1.1183
ElasticNet (B3), POOS  1.0180 1.0512 1.0135 1.0018 1.0148 1.0719  0.9898 0.9777
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Short training period: starts in 2010MO01

Table 17: This table shows for the variable export (value index) (int_uitvoer_waarde_index) the RMSEs of
all the models that have been run for the different forecasting horizons. For this table the training period
starts at 2010MO01. The test period is from 2015MO01 until 2023M12. For this variable a first-difference
log transformation is used. The models are divided in data poor and data rich-models. The first data
poor model, the AR, BIC, is the benchmark model and all other RMSEs are relative to this value. The
stars indicate the results of a Diebold-Mariano test compared to the benchmark model (Hy: no difference
in forecasting accuracy between the two models): * significance at 10% level, #x* significance at 5% level,
and * % * significance at 1% level.

Variable transformed Variable backtransformed
Models h=1 h=3 h =6 h =12 h=1 h=3 h =6 h =12
Data poor models
AR, BIC (BM) 0.0387 0.0232 0.0146 0.0097 5.0071 9.0048 11.965 16.192
AR, k-fold 1.0000 0.9521 0.9806 0.9619 1.0000 0.9650 0.9865  0.9495
AR, POOS 1.0000 1.0259 0.9808 0.9656 1.0000 1.0526 0.9870 0.9518
RF AR, k-fold 0.9910 0.9211 0.9988 0.8660 0.9923 0.9563 1.0677  0.9179
RF AR, POOS 0.9922 0.9042 0.9371 0.8701 0.9922 0.9284 0.9932  0.9230
RR AR, k-fold 0.9843 0.9723 0.9723 0.9303 0.9876 0.9821 0.9689  0.9137
RR AR, POOS 0.9828 0.9856 0.9664 0.9499 0.9985 0.9956 0.9706  0.9348
KRR AR, k-fold 1.0469 0.9076 0.9872 0.7568* 1.0426 0.9319 1.0541  0.7452*
KRR AR, POOS 0.9430 1.0056 1.0524 0.8837 0.9511 1.1133 1.1304 0.8483
Data rich models
ARDI, k-fold 1.1918%** 0.9436 1.1793 1.1674** 1.1026 0.9417 1.1040 1.1198*
ARDI, POOS 1.1669***  1.0385 1.1564 1.1383 1.0672 1.0000 1.0946  1.1080
RF ARDI, k-fold 1.0157 0.9484 1.0661 0.9681 1.0251 0.9694 1.0837  0.9920
RF ARDI, POOS 1.0053 0.9695 1.0473 0.9662 1.0135 1.0102 1.1145 1.0205
RR ARDI, k-fold 1.0803 1.1094 1.1007 1.4198* 1.0369 1.0772 0.9870 1.3438
RR ARDI, POOS 1.1196 1.1648 1.1906 0.9888 1.0654 1.1395 1.1286  0.9866
KRR ARDI, k-fold 1.1958** 1.0735 1.0368 0.9842 1.2634** 1.1139 1.0044 0.9215
KRR ARDI, POOS 1.1899** 1.1967 0.9144 1.0883 1.2616** 1.2696 0.9170 1.0479
ARVIF, k-fold 1.0429 1.0730 0.9726 1.2271* 1.0603 1.0975 0.9776  1.1947
ARVIF, k-fold 1.3722** 1.0287 1.0891 1.3611* 1.4405** 1.0487 0.9875 1.3132*
ARVIF, POOS 1.3985** 1.1221 1.1662* 1.4055** 1.4641** 1.1731 1.1194 1.4111*
RF ARVIF, k-fold 0.9721 0.9276 1.0710 1.2678 0.9752 0.9540 1.1129 1.3524
RF ARVIF, POOS 0.9776 0.9406 1.0536 1.1082 0.9825 0.9722 1.0737  1.0857
RR ARVIF, k-fold 1.0808 1.1141*  1.0820 1.2064 1.1006 1.1953* 1.0589  1.1600
RR ARVIF, POOS 1.0396 1.1043*  1.1869 1.0940 1.0602 1.1609* 1.1418 1.0605
KRR ARVIF, k-fold 1.1418 1.0563 0.9458 0.9679 1.1802* 1.1053 0.9215 0.9673
KRR ARVIF, POOS 1.1262 1.0180 0.9235 0.9852 1.1899* 1.0859 0.8998 0.9756
Lasso (B1), k-fold 1.0170 1.1272 1.2122 1.2582 1.0177 1.0862 1.1947  1.2416
Lasso (B2), k-fold 1.0205 0.9934 1.0251 1.0289 1.0434 0.9786 1.0083  1.0479
Lasso (B3), k-fold 1.0984 0.9436 0.9555 1.0963 1.1071 0.9510 0.9065 1.1090
Lasso (B1), POOS 1.0102 1.0881 1.2806** 1.2221* 1.0145 1.0892 1.2378 1.2700*
Lasso (B2), POOS 1.0075 0.9967 1.0554 0.9847 1.0316 0.9736 1.0414  0.9972
Lasso (B3), POOS 1.1423* 0.9955 1.0672 1.0345 1.1480 1.0114 1.0338 1.0529
Ridge (B1), k-fold 1.4296*** 1.0700 1.4624* 1.3884 1.4469*** 1.0749 1.4576 1.3530
Ridge (B2), k-fold 1.3831***  1.0174 1.0145 0.9880 1.3714***  0.9977 1.0130  1.0049
Ridge (B3), k-fold 1.6524***  1.1592*  1.0290 0.9563 1.6511***  1.2016* 1.0062 0.9480
Ridge (B1), POOS 1.3311%** 1.0520 1.3494 1.3742 1.3051*** 1.0507 1.3545 1.3401
Ridge (B2), POOS 1.2953***  1.0337 0.9881 1.0136 1.2527***  0.9828 0.9682  1.0520
Ridge (B3), POOS 1.6577***  1.1663*  1.0463 0.9503 1.6527***  1.2081* 1.0359 0.9414
ElasticNet (B1), k-fold 1.0155 1.0650 1.2860 1.1975 1.0258 1.0216 1.2746  1.2456
ElasticNet (B2), k-fold 1.0196 0.9920 1.0152 1.0323 1.0433 0.9758 1.0055 1.0551
ElasticNet (B3), k-fold 1.1286 0.9554 0.9709 1.1193 1.1183 0.9600 0.9510 1.1282
ElasticNet (B1), POOS 1.0133 1.0380 1.2614* 1.2240* 1.0213 1.0041 1.2380 1.2714*
ElasticNet (B2), POOS 1.0131 0.9810 1.0204 1.0102 1.0396 0.9569 1.0104 1.0420
ElasticNet (B3), POOS  1.1393* 1.0016 1.0662 1.0289 1.1440 1.0155 1.0335 1.0506
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G.5 Industry (production index)

Maximum training period: for industry (production index) this starts in 2008 M01

Table 18: This table shows for the variable industry (production index) (prd-productie_index_industrie)
the RMSEs of all the models that have been run for the different forecasting horizons. For this table the
training period starts at 2008M01. The test period is from 2015MO01 until 2023M12. For this variable
a first-difference log transformation is used. The models are divided in data poor and data rich-models.
The first data poor model, the AR, BIC, is the benchmark model and all other RMSEs are relative to this
value. The stars indicate the results of a Diebold-Mariano test compared to the benchmark model (Hy:
no difference in forecasting accuracy between the two models): x significance at 10% level, #x* significance
at 5% level, and * * x significance at 1% level.

Variable transformed Variable backtransformed
Models h=1 h =3 h =26 h =12 h=1 h =3 h =26 h =12
Data poor models
AR, BIC (BM) 0.0192 0.0102 0.0068 0.0039 2.0872 3.2978 4.4787 5.1523
AR, k-fold 1.0000 0.9948* 0.9762 1.0000 1.0000 0.9943* 0.9735 1.0000
AR, POOS 1.0028 1.0052 1.0093 1.1438* 1.0025 1.0061 1.0114 1.1391*
RF AR, k-fold 1.0246 0.9596 0.9851 1.0320 1.0223 0.9541 0.9664 1.0416
RF AR, POOS 0.9872 0.9321* 1.0316 1.1563 0.9875 0.9255* 1.0165 1.1907
RR AR, k-fold 0.9965 0.9984 0.9826 1.0015 0.9964 0.9976 0.9788 0.9985
RR AR, POOS 1.0044 0.9975 0.9839 1.1309* 1.0044 0.9966 0.9806 1.1292*
KRR AR, k-fold 1.0645* 0.9737 1.0478 1.2296 1.0654* 0.9769 1.0435 1.2542
KRR AR, POOS 1.0392 0.9047* 0.9117 1.4448 1.0390 0.9052* 0.9155 1.4868
Data rich models
ARDI, k-fold 0.9624 0.9812 1.0467 1.3264 0.9611 0.9722 1.0377 1.3174
ARDI, POOS 0.9822 1.0539 1.0450 1.7103 0.9825 1.0488 1.0392 1.6155
RF ARDI, k-fold 1.0605 1.0212 0.9212 0.9613 1.0619 1.0277 0.9106 0.9661
RF ARDI, POOS 1.0382 0.9853 0.8985 0.9812 1.0417 0.9962 0.8954 0.9873
RR ARDI, k-fold 0.9983 1.0506 1.2179* 1.2184 1.0018 1.0475 1.2024* 1.2138
RR ARDI, POOS 0.9789 1.0908 1.3437 1.4102 0.9760 1.0968 1.3218 1.3740
KRR ARDI, k-fold 1.0334 0.9767 1.0691 1.2078 1.0329 0.9807 1.0622 1.2241
KRR ARDI, POOS 1.0212 0.9215 0.9092** 1.2235 1.0245 0.9322 0.9140** 1.2478
ARVIF, k-fold 1.0753 1.0699 1.0155 1.1818**  1.0851 1.0800 0.9919 1.1601*
ARVIF, POOS 1.0533 1.0798 1.0574 1.1915**  1.0656 1.0933 1.0271 1.1682**
RF ARVIF, k-fold 0.9683 0.9726 1.1070 1.1155 0.9704 0.9719 1.0786 1.1191
RF ARVIF, POOS 0.9930 0.9890 1.1010 1.1247 0.9925 0.9890 1.0741 1.1298
RR ARVIF, k-fold 1.0332 1.0908 1.0340 1.0509 1.0306 1.0999 1.0053 1.0424
RR ARVIF, POOS 1.0856 1.4265**  1.2326 1.0040 1.0864* 1.4607**  1.1935 0.9973
KRR ARVIF, k-fold 1.0340 0.9452 0.9897 1.3252* 1.0347 0.9500 0.9909 1.3465*
KRR ARVIF, POOS 1.0191 0.9719 0.9667 1.3854 1.0217 0.9749 0.9687 1.3815
Lasso (B1), k-fold 0.9859 1.0264 1.3397** 1.8444** 0.9900 1.0257 1.3225** 1.8353**
Lasso (B2), k-fold 0.9812 1.0650* 1.0594 1.3524 0.9857 1.0608* 1.0417 1.3884
Lasso (B3), k-fold 1.0078 0.9777 0.9534 1.2312 1.0153 0.9889 0.9509 1.2430
Lasso (B1), POOS 0.9924 0.9728 0.9697 1.2443 0.9971 0.9810 0.9718 1.2409
Lasso (B2), POOS 0.9807 0.9639 0.9729 1.1339 0.9852 0.9720 0.9680 1.1414
Lasso (B3), POOS 1.0278 1.0246 0.9117* 1.0335 1.0310 1.0393 0.9074* 1.0348
Ridge (B1), k-fold 1.0886 1.0526 1.2994* 1.3734 1.1043 1.0602 1.2963* 1.3695
Ridge (B2), k-fold 1.1886*** 1.0398 1.0447 1.1864 1.2090*** 1.0457 1.0404 1.2043
Ridge (B3), k-fold 0.9825 0.9642 0.9338**  1.1860 0.9882 0.9729 0.9300**  1.2016
Ridge (B1), POOS 1.0939 1.0674 1.2326 1.6609 1.1091 1.0760 1.2338 1.6249
Ridge (B2), POOS 1.1896*** 1.0492 1.0311 1.1035 1.2094*** 1.0546 1.0259 1.1132
Ridge (B3), POOS 0.9817 0.9635 0.9593**  1.1839 0.9861 0.9722 0.9594* 1.2014
ElasticNet (B1), k-fold 0.9776 1.0180 1.3038**  2.0161**  0.9831 1.0206 1.2845**  2.0687**
ElasticNet (B2), k-fold 1.0504* 1.0522 1.0538 1.2208* 1.0507* 1.0490 1.0388 1.2355*
ElasticNet (B3), k-fold 0.9937 0.9985 0.9746 1.1345 0.9992 1.0108 0.9702 1.1318
ElasticNet (B1), POOS  0.9845 0.9392 0.9974 1.5153 0.9894 0.9426 0.9978 1.4736
ElasticNet (B2), POOS 1.0026 0.9884 1.0060 1.1411 1.0077 0.9967 0.9964 1.1488
ElasticNet (B3), POOS  1.0203 1.0429 0.9492 1.0308 1.0263 1.0513 0.9474 1.0342
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Short training period: starts in 2010MO01

Table 19: This table shows for the variable industry (production index) (prd-productie_index_industrie)
the RMSEs of all the models that have been run for the different forecasting horizons. For this table the
training period starts at 2010M01. The test period is from 2015MO01 until 2023M12. For this variable
a first-difference log transformation is used. The models are divided in data poor and data rich-models.
The first data poor model, the AR, BIC, is the benchmark model and all other RMSEs are relative to this
value. The stars indicate the results of a Diebold-Mariano test compared to the benchmark model (Ho:
no difference in forecasting accuracy between the two models): = significance at 10% level, #x significance
at 5% level, and = * x significance at 1% level.

Variable transformed

Variable backtransformed

Models h=1 h=3 h =6 h =12 h=1 h=3 h =6 h =12

Data poor models
AR, BIC (BM) 0.0197 0.0101 0.0070 0.0039 2.1373 3.3030 4.6298 5.2716
AR, k-fold 1.0089 0.9941 0.9821 1 1.0083 0.9931 0.9809 1
AR, POOS 1.0089 1.0514 1.0249 1.0267 1.0083 1.0519 1.0259 1.0262
RF AR, k-fold 0.9832 0.9899 0.9452 1.0676 0.9853 0.9824 0.9394 1.0732
RF AR, POOS 0.9856 0.9531* 0.9740 1.1969 0.9879 0.9436* 0.9776 1.2204
RR AR, k-fold 0.9912 1.0041 0.9689 1.0181 0.9924 1.0041 0.9669 1.0204
RR AR, POOS 0.9838 1.0407 0.9918 0.9919 0.9858 1.0403 0.9889 0.9929
KRR AR, k-fold 1.0174 0.9533 1.0488 1.2468 1.0205 0.9519 1.0567 1.2811
KRR AR, POOS 1.0251 1.0099 1.0700 1.6383 1.0269 1.0184 1.0831 1.6177

Data rich models
ARDI, k-fold 1.0068 0.9758 1.0053 1.1564* 1.0107 0.9691 0.9939 1.1545*
ARDI, POOS 1.0471 1.0737 1.1883**  1.2352 1.0520 1.0651 1.1936**  1.2343
RF ARDI, k-fold 1.0151 1.0479 0.9993 1.0809 1.0259 1.0554 0.9983 1.0766
RF ARDI, POOS 1.0074 1.1093 1.0867 1.1683 1.0136 1.1062 1.0908 1.1647
RR ARDI, k-fold 0.9927 0.9514 0.9943 1.1708 0.9986 0.9506 0.9834 1.1760
RR ARDI, POOS 1.0733 1.0126 0.9612 1.1886 1.0814 1.0155 0.9529 1.1869
KRR ARDI, k-fold 0.9974 1.0081 0.9690 1.3800* 1.0001 1.0091 0.9668 1.3901*
KRR ARDI, POOS 0.9763 0.9412 1.0448 1.3829** 0.9771 0.9426 1.0450 1.3949**
ARVIF, k-fold 0.9963 1.1886* 1.1215* 1.3578***  0.9935 1.1917* 1.1120* 1.3559***
ARVIF, POOS 0.9883 1.1746* 1.1159* 1.3632***  0.9866 1.1765 1.1093* 1.3565%**
RF ARVIF, k-fold 0.9487 1.1256 1.1802 1.6337* 0.9539 1.1085 1.1662 1.6908
RF ARVIF, POOS 0.9350 1.1656 1.1282 1.3480 0.9374 1.1353 1.1153 1.3585
RR ARVIF, k-fold 0.9857 1.0857 1.0576 1.1286** 0.9841 1.0868 1.0520 1.1219**
RR ARVIF, POOS 0.9611 1.4995**  1.0831 1.1517** 0.9630 1.5243**  1.0812* 1.1424**
KRR ARVIF, k-fold 1.0947 0.9809 0.9404 1.3559** 1.1341 0.9826 0.9426 1.3662*
KRR ARVIF, POOS 0.9565 0.9394 1.0136 1.2896 0.9595 0.9359 1.0369 1.3078
Lasso (B1), k-fold 1.0030 1.1447* 1.2274* 1.6751* 1.0056 1.1485**  1.2080 1.6363*
Lasso (B2), k-fold 0.9887 1.0530 1.0809 1.1106 0.9997 1.0645 1.0844 1.1160
Lasso (B3), k-fold 0.9767 0.9600 0.9869 1.1950 0.9839 0.9629 0.9885 1.1923
Lasso (B1), POOS 0.9595 1.3046**  1.2065 1.1969 0.9665 1.3359**  1.1801 1.1783
Lasso (B2), POOS 0.9670 1.0459 1.0589 1.2078 0.9725 1.0575 1.0693 1.2317
Lasso (B3), POOS 1.0267 1.0100 0.9835 1.1612 1.0315 1.0132 0.9824 1.1707
Ridge (B1), k-fold 1.0778 1.3590 1.1360 1.5862 1.0842 1.3493 1.1312 1.5425
Ridge (B2), k-fold 1.0827*  0.9780 0.9644 1.0994 1.0953**  0.9814 0.9642 1.1144
Ridge (B3), k-fold 0.9555 0.9675 0.9207**  1.1913 0.9625 0.9686 0.9176**  1.2099
Ridge (B1), POOS 1.0818 1.1913**  1.0977 1.6475 1.0884 1.1806* 1.0963 1.5865
Ridge (B2), POOS 1.0778*  1.1330 1.0546 1.1542 1.0903**  1.1530 1.0522 1.1844
Ridge (B3), POOS 0.9510 0.9673 0.9245**  1.1936 0.9577 0.9695 0.9217**  1.2115
ElasticNet (B1), k-fold 1.0305 1.2545 1.1303 1.5744 1.0301 1.2421 1.1144 1.5331
ElasticNet (B2), k-fold 0.9760 1.0198 0.9772 1.0623 0.9848 1.0259 0.9748 1.0676
ElasticNet (B3), k-fold 0.9686 0.9741 0.9990 1.0990 0.9764 0.9735 1.0039 1.1002
ElasticNet (B1), POOS  0.9637 1.3034**  1.2174 1.4766* 0.9703 1.3356**  1.1933 1.4511*
ElasticNet (B2), POOS  0.9699 1.1757* 1.0578 1.2173 0.9756 1.2007**  1.0535 1.2430
ElasticNet (B3), POOS  1.0458 1.0084 0.9797 1.2086 1.0501 1.0108 0.9780 1.2148
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G.6 Number of sold existing homes

Maximum training period: for number of sold existing homes this starts in 1998M01

Table  20: This table shows for the variable number of sold existing homes
(wnm_aantal_verkochte_koopwoningen_bestaand) the RMSEs of all the models that have been run
for the different forecasting horizons. For this table the training period starts at 1998MO01. The test
period is from 2015M01 until 2023M12. For this variable a first-difference log transformation is used.
The models are divided in data poor and data rich-models. The first data poor model, the AR, BIC, is
the benchmark model and all other RMSEs are relative to this value. The stars indicate the results of
a Diebold-Mariano test compared to the benchmark model (Hp: no difference in forecasting accuracy
between the two models): * significance at 10% level, # significance at 5% level, and * x * significance
at 1% level.

Variable transformed Variable backtransformed
Models h=1 h=3 h =6 h=12 h=1 h=3 h=6 h =12
Data poor models
AR, BIC (BM) 0.1108 0.0389 0.0240 0.0155 1965.8 2154.7 2621.6 3174.4
AR, k-fold 1.0000 1.0000 0.9575 0.9673 1.0000 1.0000 0.9777 0.9855
AR, POOS 1.0000 1.1119* 1.0549** 1.0100 1.0000 1.0693 1.0400* 1.0177
RF AR, k-fold 1.0150 1.0245 1.0103 1.0109 1.0686 0.9783 1.0032 1.0740
RF AR, POOS 1.0206 1.0339 1.0171 1.0082 1.0784 0.9870 1.0140 1.0826
RR AR, k-fold 1.0211 0.9716 0.9758 0.9694 1.0043 0.9537* 0.9762 0.9913
RR AR, POOS 1.0636 1.0770 1.0248 0.9687 1.0350 1.0246 1.0244 0.9915
KRR AR, k-fold 1.0144 1.0383 0.9869 1.0127 1.0499 1.0194 0.9951 1.0316
KRR AR, POOS 1.0098 1.0020 1.0102 1.0649 1.0437 0.9727 1.0070 1.1201*
Data rich models
ARDI, k-fold 1.0298 1.0887 1.2775 0.9579 1.0224 1.0241 1.1270 0.9982
ARDI, POOS 1.3491***  1.1811 1.4741 1.0455 1.3214***  1.0701 1.2329 1.0279
RF ARDI, k-fold 1.0465 1.0097 1.0066 0.9360 1.1014 0.9460 1.0011 0.9399
RF ARDI, POOS 1.0572 1.0510 0.9333 0.9932 1.1060 0.9894 0.9438 0.9971
RR ARDI, k-fold 1.2091** 1.1764 1.3362 1.1841 1.2408** 1.1147 1.1579 1.0801
RR ARDI, POOS 1.2411°%** 1.2067 1.2010 1.0391 1.1812** 1.1227 1.0860 0.9916
KRR ARDI, k-fold 1.0798 1.0713 0.9704 0.9273 1.0880 1.0591 0.9775 0.9751
KRR ARDI, POOS 1.3743***  0.9541 0.9776 1.0363 1.4249***  0.9238 0.9650 1.0591
ARVIF, k-fold 1.1642%** 1.1274** 0.9931 0.9339 1.1490** 1.1204* 0.9823 0.9938
ARVIF, POOS 1.1642%** 1.1274** 1.0408 0.9789 1.1490** 1.1204* 1.0113 1.0306
RF ARVIF, k-fold 1.0521 0.9209 0.9378 0.9201 1.0925 0.8668* 0.9335 0.9696
RF ARVIF, POOS 1.0726 0.9749 0.9599 0.9641 1.1149 0.9224 0.9589 0.9944
RR ARVIF, k-fold 1.1941** 1.2512 1.1342 0.9633 1.1646** 1.1280 1.0244 1.0061
RR ARVIF, POOS 1.1878* 1.1031 1.1920 1.2691 1.1552* 1.0316 1.0531 1.2404
KRR ARVIF, k-fold 1.2436** 1.0212 1.0180 0.9598 1.2937***  1.0085 0.9872 1.0314
KRR ARVIF, POOS 1.3056*** 1.0022 1.0310 0.9409 1.4148*** 0.9949 0.9979 1.0314
Lasso (B1), k-fold 1.1231* 1.1492 1.2995 1.0930 1.1100 1.0088 1.1508 1.0864
Lasso (B2), k-fold 1.1143* 1.2215* 1.1495 1.1473 1.0980 1.1128 1.1305 1.1998
Lasso (B3), k-fold 1.4151%** 1.2724** 1.1131 1.0086 1.4242%** 1.2087* 1.0892 1.0027
Lasso (B1), POOS 1.1655 1.0977 1.2642 1.2086 1.1384 1.0084 1.1579 1.2410
Lasso (B2), POOS 1.1711 1.0913 1.3123** 1.1874 1.1509* 1.0363 1.2746** 1.1974
Lasso (B3), POOS 1.2383** 1.3052***  1.2493 1.0035 1.2243** 1.2350**  1.1810 1.0778
Ridge (B1), k-fold 1.2072** 1.3469* 1.3261 1.0592 1.2101** 1.1861 1.1848 1.0477
Ridge (B2), k-fold 1.2400** 1.2849** 1.1246 1.0313 1.2331** 1.2140 1.1411 1.1081
Ridge (B3), k-fold 1.2552** 1.4348*** 1.2749** 0.8964 1.2134** 1.3772** 1.2916* 0.9705
Ridge (B1), POOS 1.2434** 1.3360* 1.3173 1.0720 1.2077* 1.1704 1.1870 1.0671
Ridge (B2), POOS 1.2337* 1.1857 1.2057* 1.0991 1.2074** 1.1272 1.2401 1.1978
Ridge (B3), POOS 1.2463** 1.2815** 1.3295%** 0.9787 1.2092** 1.2103* 1.3618** 1.0641
ElasticNet (B1), k-fold 1.1311* 1.3399 1.4602 1.2620 1.1187* 1.1069 1.2363 1.1784
ElasticNet (B2), k-fold 1.1742* 1.1470 1.0933 1.0636 1.1542* 1.0450 1.0888 1.1223
ElasticNet (B3) k-fold 1.3820** 1.2479** 1.1223 1.0227 1.4161** 1.1587* 1.0999 1.0642
ElasticNet (B1), POOS 1.1635 1.0875 1.2539 1.2007 1.1503 1.0033 1.1516 1.2354
ElasticNet (B2), POOS  1.2191* 1.0648 1.1802 1.1981 1.1920** 1.0078 1.1786 1.2602
ElasticNet (B3), POOS  1.2866***  1.1917* 1.3511* 1.0033 1.2613** 1.1635 1.2474* 1.0855
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Short training period: starts in 2010MO01

Table 21: This table shows for the wvariable number of sold existing homes
(wnm_aantal_verkochte_koopwoningen_bestaand) the RMSEs of all the models that have been run
for the different forecasting horizons. For this table the training period starts at 2010MO1. The test
period is from 2015M01 until 2023M12. For this variable a first-difference log transformation is used.
The models are divided in data poor and data rich-models. The first data poor model, the AR, BIC, is
the benchmark model and all other RMSEs are relative to this value. The stars indicate the results of
a Diebold-Mariano test compared to the benchmark model (Hp: no difference in forecasting accuracy
between the two models): * significance at 10% level, *x significance at 5% level, and * x * significance
at 1% level.

Variable transformed Variable backtransformed
Models h=1 h=3 h=6 h=12 h=1 h=3 h=6 h =12
Data poor models
AR, BIC (BM) 0.1191 0.0444 0.0245 0.0168 2091.5 2380.5 2734.3 3484.9
AR, k-fold 1.0000 1.0085 0.9919 0.9452 1.0000 1.0223 1.0015 0.9715
AR, POOS 1.1537* 1.1990** 1.0009 0.9680 1.1257** 1.1752** 1.0013 1.0005
RF AR, k-fold 1.0296 0.9418 1.0178 0.9346 1.0852 0.9370 1.0270 0.9996
RF AR, POOS 1.0322 0.9453 1.0279 0.9462 1.0856 0.9366 1.0373 1.0306
RR AR, k-fold 1.0549 0.9875 1.0150 0.9219 1.0177 0.9757 1.0216 0.9867
RR AR, POOS 1.0274 1.0131 1.0385 0.9566 0.9986 1.0016 1.0365 0.9963
KRR AR, k-fold 1.0427 1.0484 1.0704 0.9434 1.0875 1.1250 1.0503 1.0030
KRR AR, POOS 1.0818 1.0595 1.0427 1.0560 1.1409 1.0483 1.0402 1.0780
Data rich models
ARDI, k-fold 1.3823***  1.3473** 1.1667 1.1833 1.3690***  1.3198***  1.1164 1.1217*
ARDI, POOS 1.3936***  1.3856** 1.5689 1.7079 1.3180***  1.2919** 1.3239* 1.3585*
RF ARDI, k-fold 1.1723 1.0437 0.9899 0.9078 1.1850* 1.0138 0.9838 0.9870
RF ARDI, POOS 1.1860* 1.0041 0.9857 0.8469 1.2527* 0.9676 0.9503 0.9212
RR ARDI, k-fold 1.3958** 1.3172* 1.2493 1.1607 1.4042%** 1.2478* 1.1457 1.3432
RR ARDI, POOS 1.2620** 1.0627 1.3459 1.5797 1.2415** 1.0856 1.1469 1.4885*
KRR ARDI, k-fold 1.4305***  0.9434 1.0022 0.9359 1.4518***  0.9253 0.9874 1.0293
KRR ARDI, POOS 1.2335** 1.0025 1.0684 0.8855 1.2746** 1.0178 1.0679 0.9864
ARVIF, k-fold 1.4685%** 1.4774%** 1.3874** 1.3166* 1.5719*** 1.5156™** 1.3452%** 1.6299***
ARVIF, POOS 1.4257***  1.5311***  1.5874 1.3519*  1.5260***  1.6063***  1.4089** 1.6744**
RF ARVIF, k-fold 1.1352 0.9226 0.9462 0.8891 1.1767* 0.9127 0.9410 1.0433
RF ARVIF, POOS 1.1223 0.9638 1.0084 0.8782 1.1677 0.9630 0.9962 1.0205
RR ARVIF, k-fold 1.1753 1.2454* 1.2350* 1.0236 1.1858* 1.3092** 1.1929** 1.2248
RR ARVIF, POOS 1.1116 1.0736 1.2058 1.3065 1.1226 1.0935 1.2132* 1.6190
KRR ARVIF, k-fold 1.1986 0.9806 1.0921 1.0265 1.1961 0.9589 1.0830 1.1982
KRR ARVIF, POOS 1.2611 0.9494 1.0565 0.9825 1.2546* 0.9609 1.0385 1.1239
Lasso (B1), k-fold 1.1200 1.3803 1.4063 1.0733 1.1081 1.2534* 1.2013 1.1639
Lasso (B2), k-fold 1.1687 1.1822 1.2235 0.9962 1.1593* 1.1596 1.1479 1.0813
Lasso (B3), k-fold 1.2974** 1.3028* 1.3100* 0.9663 1.3078** 1.2606* 1.3140 1.0658
Lasso (B1), POOS 1.1205 1.0439 1.3514 0.8829 1.1024 1.0282 1.1849 1.0012
Lasso (B2), POOS 1.1764** 1.0603 1.2402* 0.9063 1.1783** 1.0711 1.1886* 0.9830
Lasso (B3), POOS 1.4338** 1.1841 1.4050** 0.9421 1.4550*** 1.1509 1.4530** 1.0277
Ridge (B1), k-fold 1.5304** 1.4847** 1.8112** 1.1969 1.5560***  1.3765** 1.6064***  1.2366
Ridge (B2), k-fold 1.4357** 1.1928 1.2589** 0.8794 1.4423***  1.1713 1.2169* 0.9601
Ridge (B3), k-fold 1.6764***  1.2468* 1.4371***  0.8661 1.7165***  1.2387* 1.3961***  0.9322*
Ridge (B1), POOS 1.4825** 1.3720** 1.8311* 1.1263 1.4818** 1.3170** 1.6093*** 1.2042
Ridge (B2), POOS 1.4037** 1.1716 1.2485** 0.8906 1.4099** 1.1520 1.2140** 0.9743
Ridge (B3), POOS 1.6864***  1.2255* 1.4197***  0.8645 1.7175***  1.2213* 1.3881***  0.9329
ElasticNet (B1), k-fold 1.1200 1.4857* 1.4866* 1.1776 1.1147 1.3376** 1.3327* 1.2280*
ElasticNet (B2), k-fold 1.1395 1.2061* 1.1840 0.8876 1.1355* 1.2070 1.1398 0.9672
ElasticNet (B3), k-fold 1.3443***  1.3055** 1.3900** 1.0292 1.3501** 1.2710* 1.4371** 1.1795
ElasticNet (B1), POOS  1.1447 1.0540 1.4175 0.8867 1.1206 1.0362 1.2266 1.0036
ElasticNet (B2), POOS  1.1889** 1.0962 1.1838 0.8974 1.1924** 1.1097 1.1487 0.9824
ElasticNet (B3), POOS  1.3919** 1.1743 1.4078** 0.9258 1.3968** 1.1405 1.4561** 1.0120
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G.7 Unemployment rate

Maximum training period: for unemployment rate this starts in 2006M01

Table 22: This table shows for the variable unemployment rate (arb_werkloosheidspercentage) the RMSEs
of all the models that have been run for the different forecasting horizons. For this table the training
period starts at 2006M01. The test period is from 2015MO01 until 2023M12. For this variable a first-
difference log transformation is used. The models are divided in data poor and data rich-models. The
first data poor model, the AR, BIC, is the benchmark model and all other RMSEs are relative to this
value. The stars indicate the results of a Diebold-Mariano test compared to the benchmark model (Hy:
no difference in forecasting accuracy between the two models): x significance at 10% level, #x significance
at 5% level, and * * * significance at 1% level.

Variable transformed Variable backtransformed
Models h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12
Data poor models
AR, BIC (BM) 0.0291 0.0234 0.0197 0.0131 0.1381 0.3264 0.5692  0.8131
AR, k-fold 1.0000 0.9387 0.9929 1.0000 1.0000 0.9220 0.9960  1.0000
AR, POOS 1.0000 1.0243 1.0057 1.0183 1.0000 1.0187 1.0160 1.0228
RF AR, k-fold 1.0533 1.0921 1.0150 1.2108 1.0446 1.0985 1.0278  1.4105
RF AR, POOS 1.1112** 1.1258 1.0292 1.2379* 1.0997** 1.1450 0.9950 1.4584*
RR AR, k-fold 1.0079 1.0952 0.9860 0.9959 1.0009 1.0965 0.9880  0.9945
RR AR, POOS 1.0506 1.0225 0.9977 1.0147 1.0462 1.0185 1.0006 1.0196
KRR AR, k-fold 1.0668 1.4759**  1.0116 1.1751 1.0672 1.4660**  1.0910 1.3503
KRR AR, POOS 1.0891 1.0022 1.0106 1.3509 1.1217 1.0043 0.9571  1.5423**
Data rich models
ARDI, k-fold 0.9813 0.8719 0.9273 1.3583 0.9565 0.8220 0.8846  1.2472
ARDI, POOS 1.1293* 1.3324 1.0647 1.7397 1.0601 1.2130 1.0820 1.7661
RF ARDI, k-fold 1.0151 0.9173 0.8842 0.8823*  1.0063 0.9291 0.8563  0.8430**
RF ARDI, POOS 1.0288 0.9255 0.8697* 0.8480* 1.0044 0.9317 0.8477  0.7949**
RR ARDI, k-fold 1.0090 1.0746 0.9870 1.3862 0.9894 1.0313 0.9262 1.3087
RR ARDI, POOS 0.9962 1.2291 1.1198 1.5895 0.9749 1.1477 1.0649 1.5621
KRR ARDI, k-fold 1.0182 1.0053 0.8710 0.9771 1.0056 0.9983 0.8885 0.9852
KRR ARDI, POOS 1.0602 0.9994 0.8277 0.9786 1.0364 0.9891 0.8102 1.0192
ARVIF, k-fold 0.9963 0.9548 0.9310 1.0282 0.9638 0.9135 0.9383 0.9794
ARVIF, POOS 1.0093 0.9828 0.9310 1.0397 0.9728 0.9482 0.9383  0.9959
RF ARVIF, k-fold 1.0278 0.9806 0.9328 1.0536 1.0058 0.9882 0.9253 1.1643
RF ARVIF, POOS 1.0472 0.9816 0.8928 1.0603 1.0241 0.9923 0.8920 1.1110
RR ARVIF, k-fold 0.9848 0.9742 0.9307 1.2473 0.9718 0.9454 0.9444  1.1887
RR ARVIF, POOS 0.9939 1.0831 0.9326 1.4150 0.9709 1.0348 0.9340 1.3809
KRR ARVIF, k-fold 0.9992 0.9156* 0.9010 0.8796*  0.9985 0.9308 0.9660 0.8672*
KRR ARVIF, POOS 1.0218 0.9699 0.8649 1.0118 1.0347 0.9642 0.8693  1.0045
Lasso (B1), k-fold 1.0149 0.9918 1.1315 1.4147 0.9856 0.9386 1.0800 1.4286
Lasso (B2), k-fold 1.0186 1.0412 0.8301 1.0503 0.9974 1.0035 0.7997 1.0046
Lasso (B3), k-fold 1.0048 0.9645 0.8874 1.0904 0.9977 0.9719 0.8758  1.0071
Lasso (B1), POOS 1.0226 1.0288 0.9651 0.9632 0.9915 0.9692 0.9045 0.9194
Lasso (B2), POOS 1.0048 0.9926 0.8259 1.1066 0.9885 0.9522 0.8074  1.0797
Lasso (B3), POOS 1.0242 0.9670 0.8820 1.3721 1.0060 0.9582 0.8862  1.4043
Ridge (B1), k-fold 1.0312 0.9955 1.0876 1.2549 0.9923 0.9394 1.0251 1.1617
Ridge (B2), k-fold 1.0778 1.0058 0.9959 0.8573 1.0645 0.9834 0.9597 0.8496
Ridge (B3), k-fold 1.0493 0.9758 0.8886 0.9653 1.0496 0.9936 0.9066  1.0087
Ridge (B1), POOS 1.0472 1.0195 1.0140 1.3915 1.0134 0.9662 0.9495 1.3071
Ridge (B2), POOS 1.0743 1.0439 0.9505 0.8835 1.0596 1.0117 0.9228  0.8919
Ridge (B3), POOS 1.0461 0.9940 0.9204 1.0087 1.0440 1.0057 0.9168 1.0227

ElasticNet (B1), k-fold 1.0091 1.0327 1.0988 1.4948 0.9821 0.9722 1.0421  1.5915
ElasticNet (B2), k-fold 1.0110 0.9724 0.8380 0.8423 0.9943 0.9503 0.8118  0.7975
ElasticNet (B3), k-fold 1.0233 0.8880 0.8473 1.0087 0.9940 0.8806* 0.8481  0.9469
ElasticNet (B1), POOS  1.0230 1.0438 1.0304 1.0397 0.9965 0.9874 0.9633  0.9728
ElasticNet (B2), POOS  1.0476 0.9929 0.8313 1.1028 1.0318 0.9539 0.8133  1.0754
ElasticNet (B3), POOS  1.0958 0.9686 0.8700 1.3799 1.0782 0.9599 0.8830  1.4187
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Short training period: starts in 2010MO01

Table 23: This table shows for the variable unemployment rate (arb_werkloosheidspercentage) the RMSEs
of all the models that have been run for the different forecasting horizons. For this table the training
period starts at 2010MO1. The test period is from 2015MO01 until 2023M12. For this variable a first-
difference log transformation is used. The models are divided in data poor and data rich-models. The
first data poor model, the AR, BIC, is the benchmark model and all other RMSEs are relative to this
value. The stars indicate the results of a Diebold-Mariano test compared to the benchmark model (Ho:
no difference in forecasting accuracy between the two models): = significance at 10% level, #x significance
at 5% level, and = * x significance at 1% level.

Variable transformed Variable backtransformed
Models h=1 h=3 h =6 h =12 h=1 h=3 h =6 h =12
Data poor models
AR, BIC (BM) 0.0294 0.0232 0.0198 0.0167 0.1408 0.3248 0.5842 1.2578
AR, k-fold 1.0000 0.9593 1.0250 1.0000 1.0000 0.9512 1.0153  1.0000
AR, POOS 1.0093 1.0547 1.0309*  1.1224 1.0070  1.0793 1.0663 1.1767
RF AR, k-fold 1.0721 1.1686 1.0965 1.0932 1.0597 1.2314 1.1890 1.0508
RF AR, POOS 1.0409 1.1572 1.1440 1.1168* 1.0188 1.1697 1.2155 1.0582
RR AR, k-fold 1.0011 1.0570 0.9892 1.0853 0.9950 1.0855 1.0102 1.1199
RR AR, POOS 1.0342 1.0982 1.0217 1.0513 1.0279  1.1186 1.0507 1.0524
KRR AR, k-fold 1.0420 1.0780 1.0729 1.1295 1.0610 1.1451* 1.1921 1.1021
KRR AR, POOS 1.0976* 1.4524**  0.9597 0.9770 1.0848  1.4907***  1.0085 0.9513
Data rich models
ARDI, k-fold 1.0147 1.0429 0.9862 0.9440 0.9433  0.9696 0.9025 0.7018
ARDI, POOS 1.0468 1.0229 1.0282 1.0575 0.9813  0.9472 0.9442 0.8131
RF ARDI, k-fold 1.0018 0.9854 0.9786 0.8355 0.9832 0.9758 0.9300 0.7303*
RF ARDI, POOS 0.9851 1.0474 1.0406 0.8355 0.9594  1.0322 1.0021 0.7216*
RR ARDI, k-fold 1.0160 0.9718 1.0762 1.0648 0.9768 0.9224 1.0070  0.8402
RR ARDI, POOS 1.0083 0.9665 0.9759 1.0949 0.9625 0.9151 0.8980 0.9065
KRR ARDI, k-fold 1.0320 1.0488 1.0162 0.8255 1.0563 1.0371 1.0490 0.7012*
KRR ARDI, POOS 1.0557 0.9972 1.0653 0.8110 1.0261  1.0080 1.0965 0.6236*
ARVIF, k-fold 1.1489 1.0937 1.0467 1.1386 1.0742  1.0074 0.9623 1.1186
ARVIF, POOS 1.1734* 1.1460* 1.0705 1.2450 1.0879 1.0593 0.9744 1.3318
RF ARVIF, k-fold 0.9884 1.1138 1.1076 0.9885 0.9852 1.0824 1.0755 0.8536
RF ARVIF, POOS 0.9899 1.1095 1.1466 0.9498 0.9618 1.0791 1.1239  0.7906
RR ARVIF, k-fold 1.0272 1.1722* 0.9894 0.9524 0.9777  1.0696 0.9671 0.8833
RR ARVIF, POOS 1.2129* 1.1275 0.9894 0.9285 1.0958 1.0274 0.9564 0.8626
KRR ARVIF, k-fold 0.9893 0.9642 0.9148 0.9821 0.9725 0.9525 0.9083 0.9472
KRR ARVIF, POOS 0.9824 0.9674 0.8767 0.9141 0.9805 0.9600 0.8546  0.7698
Lasso (B1), k-fold 1.0184 1.1767 1.2249 1.6106 0.9762 1.0811 1.1228 1.5420
Lasso (B2), k-fold 1.0334 0.9595 0.8745 0.8332 1.0062  0.9280 0.8328 0.7921*
Lasso (B3), k-fold 1.0028 1.0380 0.8852 0.7933 0.9895 1.0248 0.8228 0.6517*
Lasso (B1), POOS 1.0968* 1.4126 1.2941 0.8690 1.0325  1.2887 1.2394  0.6637
Lasso (B2), POOS 1.2141**  1.0524 0.8517 0.7638**  1.1210 0.9978 0.8180  0.7340**
Lasso (B3), POOS 1.0545 0.9902 0.9631 0.6724**  1.0525 0.9835 0.9548  0.5400**
Ridge (B1), k-fold 1.0183 1.0765 1.1262 1.7752 0.9636  1.0110 1.0604 1.8594
Ridge (B2), k-fold 1.0095 1.0547 0.9954 0.9883 0.9869 1.0418 1.0153 0.9316
Ridge (B3), k-fold 1.0321 0.9899 0.9074 0.8778 1.0284  1.0229 0.9338 0.8188
Ridge (B1), POOS 1.1607* 1.2549 1.0971 1.3730 1.0471  1.1577 1.0381 1.1910
Ridge (B2), POOS 1.0496 1.0664 1.0564 0.9341 1.0126  1.0587 1.0642  0.8848
Ridge (B3), POOS 1.0279 0.9882 0.9134 0.8781 1.0243  1.0218 0.9432  0.8207
ElasticNet (B1), k-fold 1.0130 1.0993 1.2275 1.4528 0.9563 1.0160 1.1214 1.3472
ElasticNet (B2), k-fold 1.0263 0.9574 0.9410 0.7988 1.0006  0.9250 0.9057 0.7411*
ElasticNet (B3), k-fold 1.0296 1.0084 0.8934 0.8008 1.0125 0.9857 0.8343  0.6541*
ElasticNet (B1), POOS 1.2031** 1.3051 1.2278 0.8411 1.0973 1.2000 1.1840 0.6431
ElasticNet (B2), POOS 1.0618 1.0474 0.8856 0.7536** 1.0268  0.9981 0.9063  0.7280**
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H Comparison with the FRED-MD

In this section we present the results of our analysis on the FRED-MD (McCracken and Ng| [2016),

using the 2024MO02 vintage. We stationarize all variables by applying the suggested transformations by

McCracken and Ng| (2016]). After this, we transform all variables to have zero mean and unit variance. In

this analysis, we follow the methodology described in the main text, with the exception of omitting the

KRR model. Both our results and those of |Goulet Coulombe et al.| (2022) show that the performance of

the two models is often comparable. Consequently, we have excluded the KRR model from this analysis

for computational reasons.

To analyse the effects of having a longer dataset, we have done this analysis two times: 1) On the full
FRED-MD, where our pseudo out of sample period ranges from 1980MO01 until 2017MO01, and the training
period starts at 1963M01. 2) On a restricted FRED-MD. Here, our training period starts at 2005M01

and our out of sample period ranges from 2010MO01 until 2017MO01. For computational reasons we choose

only three of the five dependent variables as used by |Goulet Coulombe et al|(2022) in our analysis.

In Figure[17] we compare the results over both datasets. In contrary to our NL-MD results we see a clear

positive effect for the data rich feature when the maximum training period is used (Figure . This
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Figure 17: Results on the FRED-MD. VIF is excluded from the analysis. The left plot has a long training
and testing period (train - start POOS - test: 1963MO01 - 1980M01 - 2017M12), whereas the right plot
has a short training and test period (train - start POOS - test: 2005M01 - 2010M01 - 2017M12).
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effect becomes stronger with horizon, as is seen in |Goulet Coulombe et al| (2022). This effect disappears

when we restrict the training period for the FRED (Figure. This gives evidence for the fact that for
a large dataset to work optimally, more observations are needed. Although some caution is needed here,
as the treatment effects are relatively small. Furthermore, in both the NL-MD and the FRED-MD short
training period case, the error bars are large due to the limited pseudo-out-of-sample period. Similarly,
we observe a shift in the shrinkage feature when transitioning from the full sample to the restricted
sample. In the full sample, the treatment effect is negative, while in the restricted sample, it is positive.
This indicates that shrinkage models handle limited data relatively well compared to the standard factor

model.

The other features are relatively comparable to the NL-MD (Table @ Figure . They mostly show null

effects.

In Figure we specifically compare the VIF and factor method for the data rich sample, comparing the

long and short training period. First we consider the maximum training period, Figure [I8al As expected

from the literature (Coulombe et al. 2021aj, Hindrayanto et al., [2016} Jansen et al.l 2016), factors now

perform significantly better than both the lags and the VIF method. In Figure [I8B] we show the results
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Figure 18: Results on the FRED-MD. The left plot has a long training and testing period (train - start
POOS - test: 1963MO01 - 1980MO01 - 2017M12), whereas the right plot has a short training and test period
(train - start POOS - test: 2005MO01 - 2010M01 - 2017M12). This figure shows the differences between
models trained on several feature matrices.
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of the short training period. In this case, the VIF environment seems to perform relatively worse for

larger horizons. However, this effect is not significant.

Our main conclusion from our FRED analysis is that to be able to optimally use a large amount of
variables, without variable specific tuning, a longer training period is needed. If enough data is available,
factors provide a good way for data compression. However, on smaller datasets they do not necessarily

improve predictive performance.
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I Best models for the short training period

Table 24: The best performing model for each variable-horizon combination, according to their OOS-
RMSE. Here, we consider the models trained on the short trainings period. The dots indicate several
features the models can have. Red indicates data rich, green shrinkage and blue non-linearity’s. The

models with with an orange dot use k-fold cross validation, those without POOS.

Variable h=1 h=3 h=6 h =12
AEX AR Ridge (B2) o Ridge (B2) AR

CPI1 KRR ARDI ee KRR ARVIF ee KRR ARDI oo Lasso (B1) e
Deposit interest rate RR ARVIF e Ridge (B1) ARDI o ARDI o
Export (value index) KRR AR o RF AR e KRR ARDI oo KRR AR o
Industry (production index) RF ARVIF ee KRR ARVIF ee Ridge (B3) e RR AR
Number of sold existing homes AR RF ARVIF ee RF ARVIF ee RF ARDI ee
Unemployment rate KRR ARVIF ee ElasticNet (B2) e Lasso (B2) e Lasso (B3) e
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