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1 Introduction

In 1900, when biking was a necessity for all but the rich, bicycle ownership in European countries

was roughly similar (ANWB, 1900). However, a century later, the Netherlands has emerged as

the world’s leading cycling nation. With 23 million bicycles in a country of 17.7 million people,

bicycle ownership has become almost universal. Approximately 28% of all trips made by bicycle

(Ranking Royals, 2023). Denmark follows with 18% of trips, while Sweden and Germany register

12% and 9%, respectively.

In the Netherlands, cycling is also a popular choice for commuting, with approximately 25%

of commutes done by bicycle. In its major cities, this percentage is even greater, with most

people cycling to their jobs. In contrast, in most cities around the world, commuters hardly

ever choose to cycle. One may wonder why. Although countries such as the Netherlands and

Denmark benefit from a mild climate and flat terrain, this also applies to numerous other regions,

in particular cities located on flat planes (see Figure 1). This includes cities such as Stockholm,

Budapest, and London that have natural features that could make them as attractive for cycling

as Amsterdam. Although cultural traits may partially explain the high cycling rates in the

Netherlands or Denmark, it is clear that past bicycling policies in these countries also played a

crucial role in promoting today’s bicycle usage.1

Note: This figure shows the share of trips made by bicycle (in %) over time (years 1925-2015) for six selected
European cycling cities. The data are from Oldenziel and Albert De La Bruhèze (2011).

Figure 1 – Bicycle use in selected European cities

1The presence of shared bicycle systems in about 300 cities globally suggests that in many other cities mass
commuter cycling would be a viable option.
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Arguably, a key cycling policy is establishing dedicated lanes that are separated from the main

road. Separate cycleways significantly improve cyclist safety and convenience by providing clear

and protected space for cycling, free from motor vehicle interference (Thomas and DeRobertis,

2013). In the buildup area of cities, separate cycleways are typically established by reallocating

road space previously used by cars, buses and bicycles. As the monetary costs of bicycle lanes are

below those of other roads, the primary expense is the opportunity cost of reduced road space for

other modes of transport, particularly the car. Separate cycleways are therefore potentially cheap

to implement and are believed to address some fundamental challenges facing large metropolitan

areas today, including car congestion, urban sprawl, and heavy traffic pollution.

In this paper, we study the effects of bicycle commuting on the spatial structure of cities in the

Netherlands. The effects of bicycling as a commuting mode have been largely overlooked in the

economics literature. According to urban economics theory, however, one might anticipate that

an increase in bicycle commuting in global cities, at a level comparable to the Netherlands, would

lead to significant changes in their spatial organisation. This would occur because the marginal

commuting costs are highly dependent on the chosen mode of travel and are and therefore a key

factor in shaping the spatial structure of cities (Glaeser and Kahn, 2004; Baum-Snow, 2007).

Focusing on the Netherlands offers a distinct advantage as it exhibits significant spatial

variation in cycling flows between urban and rural areas. This provides valuable identifying

variation for estimating the impact of cycling on urban spatial structure. The high rate of

bicycle adoption also enable us to explore compelling counterfactual scenarios, in particular the

effects of the separated cycleways. Conducting similar counterfactuals in other countries would

require assumptions about increasing bicycle use to levels not yet observed, thereby challenging

the external validity of the model.

For a first intuition on the influence of choosing a mode on spatial structure, we turn to

the textbook monocentric city model. This model predicts that households who prefer modes

with higher marginal costs will reside closer to the city centre (Gin and Sonstelie, 1992; Glaeser,

2008).2 We illustrate this for three modes in Figure 2: walking, cycling and using the car. In the

figure, the use of specific travel modes is influenced by the initial preferences for those modes,

as reflected by the intercept of the bid-rent functions. Because car use implies the fixed costs of

owning a car and therefore lower bid-rent intercepts, but lower marginal travel costs, the model

predicts that at short distances, households prefer to walk or to use the bicycle. Taking the

predictions of the monocentric model seriously would mean that removing bicycles and forcing a
2Glaeser et al. (2008) highlight that in the US poorer individuals tend to live in city centres because they rely

more on public transport, which, due to its higher marginal travel costs, encourages them to relocate to these
locations.
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Notes: This figures illustrates the bid-rents for people using different modes are denoted by Ψ𝑚 for each mode
𝑚 = 1 (car), 2 (bicycle), 3 (walk). The land rent consists of the upper envelope of the bid rent functions.
Locations are indexed by 𝑥, where 𝑥 = 0 is the Central Business District (CBD).

Figure 2 – The monocentric city model with multiple modes

switch to cars would lead to greater urban sprawl, as this would shift the bid-rent curve for car

users (Ψ1 to Ψ′
1) upward as indicated in the figure. In contrast, if cyclists switch to walking, cities

would become more compact. Consequently, the substitution patterns between travel modes is

a key determinant of the effect of removing cycling on the spatial economy.

This also raises the question how car congestion interferes with this conclusion. Does car

congestion amplify or reduce the effect of removing cycling on the spatial Structure? Maybe

paradoxically, it appears that car congestion reduces the effect of removing cycling on the spatial

structure. The figure above clearly demonstrates this point. If car congestion increases, it leads

to a rise in the marginal cost of car travel. In the particular case where the marginal costs of

car travel equal those of bicycle travel, there would be no effect on the spatial structure.

Despite its elegance, this monocentric framework may not capture reality well, as both

residential and job locations are not fixed but endogenous. Additionally, the substitutability

between modes depends heavily on workers’ willingness to commute longer. General equilibrium

effects, including changes in housing supply and agglomeration economies, further complicate

the story. Consequently, the extent to which mode choice – particularly cycling – influences

urban spatial structure remains unclear.

Therefore, we develop a spatial quantitative model based on Ahlfeldt et al. (2015) and Heblich

et al. (2020) among others to study effects of cycling on spatial structure . Our model includes

commuting, choosing the location of residence and work, car congestion and agglomeration

economies. Similarly to Tsivanidis (2023), we explicitly incorporate choices of travel modes that
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are consistent with household utility maximisation.

In our model, we allow for four modes: bicycle, walking, public transport and car. We allow

household preferences for travel mode and residential-workplace location to be correlated by

introducing a nested choice structure. This structure can be interpreted as if workers first select

their residential-workplace location, subsequently decide between using a car or other travel

modes, and then choose whether to walk, cycle or use public transport. Car use is affected by

congestion within the area of the workplace, which we model as a ‘bathtub filled with traffic’

(Arnott, 2013; Fosgerau, 2015). Car drivers then adjust their route choices to avoid congestion in

the area. This adjustment process results in an equilibrium where congestion is evenly distributed

within the workplace area and a stable relationship between car density and speed across the

area emerges. Cyclists value the separate cycling infrastructure as it decreases their travel costs.

Gains in safety are not explicitly modeled.

Next, we estimate the model for the Netherlands. Estimation of spatial quantitative models,

rather than calibration, offers several advantages, as model parameters are derived directly from

relevant data rather than being borrowed from unrelated contexts. In addition, some parameters

are difficult to calibrate due to the lack of international benchmarks. For instance, there are no

proper benchmarks for spatial decay in commuter flows for various travel modes. Furthermore,

some relationships are likely country-specific. For example, the relationship between speed and

traffic density has not been estimated for Dutch cities, which is problematic as it strongly

depends on the quality of the underlying infrastructure (Akbar et al., 2023). To illustrate, in

the Netherlands, about half of all car kilometres are driven on highways, much higher than in

most other countries. We rely on unique microdata on commuting mode choices as well as wages,

residential and workplace location choices from Statistics Netherlands.

We then utilise our model to perform three counterfactual experiments. In the first experi-

ment, we exclude bicycles from the set of choices (and re-assign separate cycleways to cars in

dense urban areas). We find that the removal of bicycles results in a substantial 20 percentage

point increase in car commuting. This increase in car use leads to longer average commuting

distances, up by 30%, and a 2% decrease in car speeds due to increased traffic congestion. Hence,

lower per-km costs of driving contribute to increased urban sprawl. Eliminating bicycle com-

muting reduces worker welfare by about 6%. These results suggest that cycling not only helps

to maintain more compact cities, it may even be the case that bicycle-friendly policies increase

welfare.

The second experiment is arguably more realistic, and as a policy more explicit, as it removes

separate cycleways, forcing many cyclists to take detours, as not all roads are suitable for cyclists.
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This experiment mimics the situation in the US, where cycling often requires avoiding large

roads and taking detours using residential streets. We show that the share of bicycle commuters

decreases by about 20%, and welfare decreases by 1.2%. As before, making cycling less attractive

leads to longer commute times and distances, with increases of 1.2% and 7%, respectively.

The final experiment assumes that bicycle speeds will increase in the future, reflecting the

growing adoption of electric bicycles (Yin et al., 2024). Our results show that a 10% increase

in bicycle speeds leads to an 11 percent rise in cycling mode share, drawing users away from

cars, walking and public transport. As a result, the welfare of workers improves by 0.8%, and

the residential densities in inner cities increase by approximately 2%.

Related literature and contribution. With this paper, we contribute to three strands of liter-

ature, namely the literature on transport mode choice, the rapidly growing body of literature

on Quantitative Spatial Equilibrium (QSE) models, and an emerging literature on so-called

15-minute cities. Meanwhile, we increase the depth and level of detail of the analysis by using a

rich universe of Dutch microdata along with the complete Dutch transport networks including

roads, cycleways, and public transport.

Our work first contributes to a broad body of literature on mode choice, specifically focusing

on the decision to cycle.3 Rietveld and Daniel (2004) demonstrate that variations in bicycle

use in Dutch municipalities are significantly influenced by physical factors such as altitude and

city size, along with demographics. The relative speed and parking advantages of bicycles over

cars also explain spatial variation in cycling to a large extent. Buehler and Dill (2016) confirm

a positive correlation between the quality of bicycle infrastructure and cycling levels. Heinen

et al. (2010) identify additional factors affecting bicycle use, including infrastructure quality, land

use, and weather conditions, noting that car ownership reduces cycling while bicycle ownership

promotes it.

Our contribution to the mode choice literature is two-fold. First, we model mode choice using

a nested logit approach based on revealed preference data, relaxing the IIA assumption common

in many studies. Furthermore, stated choice experiments are often plagued by hypothetical

bias, making the use of revealed preference data clearly superior (Loomis, 2011). Second, we

integrate the choice of cycling with residential and workplace location decisions, acknowledging

that a preference for cycling requires living relatively close to work. This approach allows for

endogenous mode-location choices, which contrasts to the transport literature, which assumes
3See Nelson and Allen (1997); Aultman-Hall et al. (1998); Handy et al. (2002); Cervero and Duncan (2003);

Pucher and Dijkstra (2003); Saelens et al. (2003); Rietveld and Daniel (2004); Krizek and Johnson (2006); Pucher
and Buehler (2006); Titze et al. (2008); Akar and Clifton (2009); Cervero et al. (2009); Dill (2009); Pucher et al.
(2010); Xing et al. (2010); Winters et al. (2011); Beenackers et al. (2012); Broach et al. (2012); Buehler (2012);
Schoner and Levinson (2014); Ton et al. (2019); Rayaprolu et al. (2020); Ton et al. (2020).
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that residential and workplace locations are fixed (Small et al., 2007).

In the realm of the QSE literature, our study aims to advance the field in three significant

ways. Our paper builds on Ahlfeldt et al. (2015), who develop a model that includes commuting

flows, choice of workplace and residential location and agglomeration economies (see for an

overview Redding, 2023).4 Recent spatial quantitative models have also considered a more

explicit modelling of shopping trips, firm location choice, and include land use regulation, among

others (see, respectively, Miyauchi et al., 2021; Monte et al., 2018; Dericks and Koster, 2021).

As a first contribution, we explicitly analyze the equilibrium effects of infrastructure changes

on mode choice, while we examine the consequences of common assumptions such as Indepen-

dence of Irrelevant Alternatives (IIA) and mode-specific commuting time cost (Kouwenhoven

et al., 2014) for the counterfactual outcomes. In doing so, we map the triad of interactions

between mode choice, location choice and car congestion in a spatial equilibrium framework.5 To

date, only a limited number of studies applying spatial quantitative models have incorporated

mode choice (Tsivanidis, 2023; Severen, 2023; Koster, 2024; Koster et al., 2024). The study

most closely related to ours is Tsivanidis (2023) on Bogotá, Colombia. It includes two modes:

car and public transport, while relaxing the IIA assumption, with a particular focus on the

TransMilenio, a Bus Rapid Transit service. In this study, commuters choose the mode that

minimises their commuting costs, given their chosen residential and workplace locations.6 The

work of Tsivanidis (2023) is a significant contribution to the literature; however, it relies on

limited aggregate information on mode choices from a small survey and therefore does not have

information on location pair-specific mode choices. As a result, it is silent on the (spatial) shift

in mode choice at the location pair that occurs because of changes in mode-specific travel costs.

Similar limitations apply to the study by Severen (2023), which investigates the effects of LA

Metro Rail on commuting flows and housing and labour market outcomes, but not on choice

of modes. The study by Koster (2024) focuses on commuters in the UK and includes mode

choice among three options (car, public transport, other) and accounts for traffic congestion,
4To the best of our knowledge, the only spatial equilibrium model that has been estimated for the Netherlands

is Teulings et al. (2018), who show that investments in public transport infrastructure have heterogeneous effects
on location choices, significantly boosting the welfare of the highly educated. They model the location choice of
homes, workplaces, and modes as sequential. The paper clearly illustrates the outstanding quality of the Dutch
micro-data, but their model does not allow for an inversion of the amenities and productivities so that the observed
equilibrium does not match the predicted equilibrium. Moreover, Teulings et al. (2018) do not take into account
the choice of firm location and assume a uniform dwelling size. We therefore take the more standard approach as
outlined in Ahlfeldt et al. (2015).

5Although the emerging QSE literature shares strong connections with international trade studies (e.g., Eaton
and Kortum, 2002)), it is less rooted in research on mode choice and travel behaviour. Our intent is to apply
insights from the transport economics literature to the QSE literature.

6In the study, car ownership is also explicitly modeled, which introduces complications, as it is highly endoge-
nous. In high-income countries such as the Netherlands, introducing this complication has few advantages, as
income levels are high enough for all workers to buy a car.
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but does not relax the IIA assumption. This implies that mode choice substitution is imposed

by the structure of the model and is not estimated using data. Koster et al. (2024) examine

the commuting choices between car and train for Japanese workers, focusing on only two travel

modes, which results in a simplified nested structure.7

Second, to our knowledge, none of the studies in the QSE literature consider bicycles as a

mode of transport or examine the substitution between different modes, which has consequences

for commuting flows and the urban spatial structure. Our study fills this gap by incorporating

bicycle use, which is (potentially) a close substitute for walking, public transport, and car use for

shorter distances (that is, within cities), but not for longer distances. Consequently, bicycles offer

an interesting alternative for a specific share of commuting trips, but certainly not all, making

the trade-offs in mode choice and location choice more nuanced. By estimating a marginal cost

of travel time per mode, we aim to provide a deeper understanding of commuting behaviour

and mode choice in urban areas in the presence of equilibrium effects. We will demonstrate that

using mode-specific time costs is important, as failing to do so significantly biases the aggregate

mode shares and therefore underestimates welfare implications of cycling infrastructure and

cycling in general.

Third, we explicitly analyse the interaction between car congestion, transport infrastructure

provision and mode choice. A significant recent contribution by Allen and Arkolakis (2022)

accounts for the longer commute times on busier routes, demonstrating the importance of consid-

ering traffic congestion in predicting the returns on investments in transportation infrastructure.

We do not adopt their approach because we lack link-specific car traffic data on Dutch inner

city roads. Instead, we follow the approach introduced by Koster (2024), who models congestion

parsimoniously as a ‘bathtub’ (see Arnott, 2013; Fosgerau, 2015). In this setting, the speed

between residential and workplace locations depends on the density of workers who commute

by car.

Finally, with the current research we aim at contributing to the emerging field of research on

compact cities and so-called 15-minute cities. 15-minute cities refer to an urban planning concept

in which residents can access most daily necessities, including work, within a 15-minute ride from

their homes (Allam et al., 2022). Bicycles play a crucial role by providing an environmentally-

friendly mode of transport that reduces the dependency on cars, reduces emissions, and promotes

health (Moreno et al., 2021). However, there is yet no evidence to what extent bicycles actually

impact commuting trips and reduce commute distances and times. This is where our paper

makes a contribution, shedding light on the role of cycling in urban mobility.
7Additionally, due to a lack of detailed data on mode choice, they derive mode shares solely based on the

structure of their model rather than on empirical observations.
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The paper is structured as follows. Section 2 describes the context, outlines the various data

sources, and presents some basic descriptive statistics. In Section 3 we outline our model. Section

4 turns to the estimation, followed by the results of several counterfactual experiments in Section

5. Section 6 concludes.

2 Research context and data

2.1 Cycling in the Netherlands

One of the key determinants of cycling use is the presence of a high-quality cycling infrastructure

(Buehler and Dill, 2016). The first bicycle path was opened between the Dutch villages of Baarn

and Laren in 1914 and was an instant success (ANWB, 2024). However, the most significant

increase in cycling path construction occurred in the 1970s and 1980s, with approximately 25,000

km of cycling paths built during that period. The cyclist death toll doubled between the 1950s and

1970s, prompting widespread protests by the pressure group Stop de Kindermoord (“Stop child

murder”). The protesters occupied dangerous intersections, organised bicycle demonstrations,

and closed streets for children to play (Oldenziel and Albert De La Bruhèze, 2011; Bruno et al.,

2021). In response, the Dutch government initiated a nationwide plan to expand and improve

the bicycle path network, enhancing safety and comfort for cyclists.

In addition to developing an extensive cycling infrastructure within and between cities, the

government implemented policies to improve bicycle friendliness. These included introducing

traffic rules that prioritise cyclists, providing financial support and tax breaks to the bicycle

industry to foster production and innovation, and promoting the construction of widespread

bicycle parking facilities. The government also introduced laws to promote cyclist safety. In

particular, if there is a collision between a car driver and a cyclist, the former is fully accountable

for damages when they were at fault. However, when the cyclist was at fault, the driver of the

car still has to pay half of the damage. In addition, municipalities can be held accountable if

they neglect road maintenance and upkeep or allow unsafe infrastructure to exist.

Today, cycling infrastructure is ubiquitous in the Netherlands. On residential streets within

neighbourhoods with little traffic, car and bicycle traffic share the road. On-road cycling lanes

separate cyclists from the road traffic with a dashed or straight line (see the left and middle

panel of Figure 3). Busier roads are constructed with separate cycleways (right panel of Figure

3). This is a salient difference to developments in other major European countries, where cycling

infrastructure is lacking or the emphasis is on on-road cycling lanes. In the Netherlands, the

separate cycleways played an important role in physically separating traffic streams and thereby
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Notes: This figure provides a graphical illustration of the three types of cycling infrastructure in the Netherlands.
On-street cycling lanes are either marked with a dashed line (left panel, (1)), indicating that cars and bicycles
share the lane, or with a straight line (middle panel, (2)), indicating that cars are not supposed to cross that
lane. Separated cycleways (right panel, (3)) are typically physically separated from motor traffic and for cycling
exclusively.

Figure 3 – Three types of cycling infrastructure

creating a safe and comfortable cycling environment. The Netherlands boasts 30,997 km of

dedicated cycleways along 43,967 km of larger roads for through traffic (ECF, 2023). This means

that most major roads (70%) are accompanied by separate cycleways.

To ensure uniformity of cycling infrastructure layout and safety measures, countrywide

design guidelines and principles for cycling infrastructure have been formulated and updated by

a consortium of stakeholder representatives since the 1970s (CROW, 2017).

2.2 Commuting patterns

Based on the 2016-2022 annual National Travel Survey (OViN), provided by Statistics Netherlands,

we analyse the commuting patterns of a random sample of the Dutch population. The survey

provides information on travel mode, as well as residence and work location at the neighbourhood

level for in total 48,323 observations. A large proportion of workers commute by car (65%), while

25% use bicycles. For shorter distances (<5 km), most opt for cycling (55%), followed by car

use (29%). The average commuting time stands at 26 minutes in 2016.

Public transport, which consists mainly of train travel, is used mostly for long-distance

commutes between cities in the Netherlands.8 A major difference compared to other countries

is that the Netherlands has many cities located relatively close to each other, which makes

intercity commuting attractive, especially if cycling speeds increase in the future. For example,

the distance between the second and third largest cities in the Netherlands - Rotterdam and

The Hague - is only 20km.
8Approximately two-thirds of public transport commuters use the train. Of these, a significant portion –

around 32% – cycle to the train station, while 8% use bicycles to travel from the train station to work (Martens,
2004). In our counterfactual analysis, we ignore multimodal trips, likely underestimating the role of cycling in
shaping commuting patterns and influencing the urban spatial structure.
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Table 1 – Summary statistics commuting

Car Bicycle Walking Public Total

transport

Panel A: All trips

Mode share 0.65 0.25 0.04 0.06 1

Commuting time (in min) 27 18 10 53 26

Distance (in km) 24 4 1 31 18

Median speed (in km/h) 45 14 5 31

Panel B: Within city trips, < 5km

Mode share 0.29 0.55 0.14 0.02 1

Commuting time (in min) 9 12 10 21 11

Distance (in km) 3 2 0.8 3 2

Median speed (in km/h) 18 12 5 9.4 12

Share of total trips 0.14 0.68 0.99 0.08 0.31

Notes: The data are sourced from the OViN for the years 2016-2022 survey with a
total number of observations of 48,323. We only consider work commuting trips, i.e.,
recreational trips or shopping trips are excluded. Commuting time and commuting
distance are self-reported. Panel A reports summary statistics for all trips, while Panel
B reports the same summary statistics for trips shorter than 5km. Short trips start in
the majority of cases (>90%) in highly urban neighbourhoods (i.e., more than 1000
addresses per km2).

We observe that in 2017, the total number of cross-border commuters to Germany and

Belgium was only 22,340 workers, representing approximately 0.002% of the entire working

population. Therefore, border effects are not a significant concern and we ignore cross-border

commutes in what follows.

2.3 Data description

Neighbourhoods, population and workplaces. Our main data source is the universe of Dutch

2016 microdata compiled by Statistics Netherlands. All data are based on administrative sources,

unless otherwise indicated. Our unit of analysis is the neighbourhood, defined by Statistics Nether-

lands. We have information on 12,782 neighbourhoods, which on average contain approximately

600 households and span the country.9 To ensure that short-distance trips, including most bicy-

cle commutes, are captured correctly, we use small spatial units for analysis.10 Neighbourhoods

are designed to have a similar population size, meaning that in rural areas they cover larger

geographical spaces, while in densely populated cities they span smaller areas.

We use the Dutch civil register (GBA) and address register (GBAADRESOBJECTBUS) to obtain the

place of residence of each worker at the neighbourhood level. On the workplace side, we extract
9We drop a small number of neighbourhoods on the Wadden Islands, since we lack information about travel

time by ferry.
10Although we have a very granular spatial setting, our calibration procedure discussed later on is based on

the observed commuting time and travel mode, rather than on observed commuting shares, which avoids the
issue that idiosyncratic choices affect equilibrium outcomes that result in very poor counterfactual predictions, as
discussed in Dingel and Tintelnot (2020).
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firm branch locations from the national firm register (ABR). If a firm has multiple branches, we

set the workplace to the location closest to the worker’s residence following Gaigné et al. (2022).

Mode choice and travel times. We use the years 2016-2022 OViN survey for information on

mode choice per neighbourhood combination. Within the OViN survey we consider only work

commuting trips, i.e., recreational trips or shopping trips are excluded. For the estimation of

key parameters in the model, we impute mode choices for all neighbourhood combinations using

the OViN sample and applying machine learning methods11

We calculate travel times between neighbourhood pairs for four travel modes.12 Travel times

are determined along the road, cycling, and pedestrian networks using the complete Dutch road

infrastructure from the Open Street Map (OSM) database combined with assumptions on average

travel speeds per mode and network layers. The OSM database differentiates between different

types of roads (e.g., motorways, primary, secondary, and tertiary roads) and the type of cycling

infrastructure (on-road cycling lanes and separate cycleways). We use average free-flow travel

speeds per mode and type of road from the dodgr graph routing implementation (Padgham,

2019).13 We determine the congested car speeds using data sampled from the Google Maps API

based on historic traffic levels (see Appendix A.4).

For public transport, we use the 2018 operating schedule and timetables of public transport

providers in General Transit Feed Specification (GTFS) format from Open Geo. The GTFS data

contain all public transport stops, arrival and departure times of buses, trams, metros, trains,

and ferries. The routing algorithm which computes the fastest route allows for transfers within

and between modes (e.g., from bus to tram).

Wage data. We obtain yearly wages for all Dutch workers from income registry data SPOLIS

(Salaris Polis Administratie). We discard workers who receive unemployment and disability

benefits, state pensions, firm owners, and temporary workers since they either do not have a

fixed work location or their travel behaviour is likely to be governed by factors outside of our

model. We also drop workers who work less than 8 hours per week, as they are unlikely to

commute to work multiple times a week on a regular basis.

Floor space prices. We estimate floor prices conditional on housing characteristics using housing

transaction data by the Dutch Association of Real Estate Brokers (NVM), as in Teulings et al.
11These imputed mode shares are used for estimating the congestion elasticity as well as agglomeration

economies in productivity and amenity, see Sections 4.3 and 4.4. More details on the imputation method are
provided in Appendix A.5.

12In our mode choice and gravity estimations, we exclude trips longer than 120 minutes, since these are likely
to be affected by factors outside of our model.

13We present details on the travel speeds by network type and the routing procedure in Appendix A.
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(2018) and Gaigné et al. (2022). The NVM data, covering the large majority of owner-occupied

housing transactions, include transaction prices, lot sizes, interior floor space size (𝑚2), location

and numerous housing attributes (house type, number of rooms, construction year, garden, state

of maintenance, central heating, and listed building status).

Historic data. We use historic population data from 1900 as an instrumental variable to estimate

some parameters of the model. This population data comes from NLGIS for municipalities in

1900, which were smaller and comparable to the size of a large neighbourhood today. The local

population distribution is imputed by mapping buildings and assuming a uniform population

per building within each municipality based on detailed data on land use provided by Knol et al.

(2004).14

3 The model

This section introduces the theoretical framework that is amenable to analyzing urban structure.

We adapt the model of Ahlfeldt et al. (2015) in the spirit of Tsivanidis (2023) by introducing

a nested mode choice structure. Furthermore, we allow for congestion that endogenizes car

commuting time between locations.

3.1 The economy

The economy consists of a finite number of pairwise-connected locations 𝑖 = 1, . . . , 𝐼. Each

location has an area of developed land 𝐿𝑖 and floor space 𝐹𝑖, which can be used for commercial

(subscript M ) and residential (subscript R) purposes. The share of developable land devoted

to transport infrastructure is denoted by 𝜄𝑖, hence (1 − 𝜄𝑖)𝐿𝑖 is available for residential and

commercial development. The economy is populated by 𝐻 workers, who are perfectly mobile in

the housing and labour market and commute between locations by means of transport mode 𝑚.

Workers either commute by car, bicycle, public transport or walking.15

Commuting costs are modeled as iceberg costs and depend on the generalised commuting

time, which again depends on the utility offered by available mode choices, which depend on

the mode-specific commuting time. Traveling by car is subject to congestion, which increases

with the number of car commuters and decreases with the number of car lanes at the workplace

location. We feature the trade-off in the allocation of urban land to car or bicycle infrastructure
14For the 1900 land use maps, Knol et al. (2004) scanned and digitised historic maps into 50 × 50 metre grids,

classifying them into 10 categories, such as built areas, water, sand, and forest. We aggregate these categories
into three broad groups: built-up areas, open space, and water bodies.

15Public transport includes commuting by bus, tram, metro and train. In practice, some commuters combine
different modes, but for the sake of simplicity, we focus on the main mode of transport only.
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Location pair (𝑖𝑗)

Non-car nest (𝑘 = 2)

Public transport (𝑚 = 4)Walk (𝑚 = 3)Bicycle (𝑚 = 2)

Car nest (𝑘 = 1)

Car (𝑚 = 1)

Notes: This figure is a graphical illustration of the nested choice structure in our model. Workers first select
their residential-workplace location, subsequently decide between using a car or other travel modes, and then
choose whether to walk, cycle, or use public transport.

Figure 4 – Nested choice structure

by assuming that the share of land devoted to transport infrastructure, 𝜄𝑖 is fixed. Hence, for each

added bicycle lane, the car lane capacity reduces accordingly. Increasing bicycle infrastructure,

therefore, affects car congestion through two channels: a reduction in road capacity leading to

more car congestion and mode-substitution away from cars reducing congestion. The total effect

on car congestion depends therefore on the relative strength of either force.

3.2 Worker utility: amenities, location and travel mode

Each worker 𝑜 derives utility from consumption 𝑐𝑖𝑗𝑜 of a single composite good, from living in a

dwelling of size 𝑙𝑖𝑗𝑜, and from enjoying residential amenities 𝐵𝑖 and workplace amenities 𝐶𝑗 .16

After observing their idiosyncratic location preference shock, 𝜉𝑖𝑗𝑜, workers choose a location pair

that maximizes their utility which takes on the following Cobb-Douglas form:

𝑈𝑖𝑗𝑜 = 𝐵𝑖𝐶𝑗

(︂
𝑐𝑖𝑗𝑜
𝛽

)︂𝛽 (︂ 𝑙𝑖𝑗𝑜
1 − 𝛽

)︂1−𝛽
𝜉𝑖𝑗𝑜, (1)

where 𝛽 governs the share of non-housing expenditure in the utility. The idiosyncratic component,

𝜉𝑖𝑗𝑜, is drawn from a Fréchet distribution with shape parameter 𝜀 > 1 and scale parameters

𝐵𝑖, 𝐶𝑗 > 0.17 Workers earn a wage 𝑤𝑗 at their workplace 𝑗 and pay a rent 𝑝𝑖𝑙𝑖𝑗𝑜 in 𝑖, where

𝑝𝑖 is the floor price per unit in 𝑖. Commuting to work is costly and proportional to the wage.

Consequently, workers earn an income net of commuting costs of 𝑤̄𝑗 = 𝑤𝑗/𝑑𝑖𝑗 , where 𝑑𝑖𝑗 ≥ 1

reflects commute costs.

Workers select their residence-workplace-mode combination 𝑖𝑗𝑚 in a sequential manner

as illustrated in Figure 4. More specifically, each worker 𝑜 chooses a location pair 𝑖𝑗 that
16Workplace amenities are exogenous to the employer and the worker. Important examples include the presence

of shops, parks and restaurants, which can be visited during lunch or after work.
17Formally, the probability that individual 𝑜 in with location-choice 𝑖𝑗 draws an idiosyncratic preference smaller

than 𝑧 is given by Pr(𝜉𝑖𝑗𝑜 ≤ 𝑧) = exp(−𝐵𝑖𝐶𝑗𝜉−𝜀
𝑖𝑗𝑜), where 𝜀 > 1.
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maximizes utility. Given the location choice 𝑖𝑗, the worker chooses the mode of transport

𝑚 in two steps. First, the worker chooses between two mode nests 𝑘. Here, 𝑘 = 1 refers

to choosing the car nest.18 𝑘 = 2 refers to the non-car nest. The latter nest contains the

choice between bicycle use, walking and public transport. So, commuters have a Nested Logit

travel demand (McFadden, 1978), structured in a car nest, M1 ≡ {Car} and a non-car nest,

M2 ≡ {Walk, Bicycle, Public transport}.

3.3 Location choice

A worker 𝑜 chooses a residence 𝑖 and a workplace 𝑗 that maximizes the indirect utility. From

(1), the indirect utility, 𝑢𝑖𝑗𝑜 can be derived as:

𝑢𝑖𝑗𝑜 = 𝐵𝑖𝑤𝑗

𝑑𝑖𝑗𝑝
1−𝛽
𝑖

𝜉𝑖𝑗𝑜. (2)

The indirect utility is proportional to the idiosyncratic Fréchet-distributed preference shock. As

a consequence, it is also Fréchet-distributed and we can derive the probability of choosing a

certain 𝑖𝑗 combination, which takes the well-know gravity form:

𝜋𝑖𝑗 =
𝑎𝑖𝜔𝑗𝑑

−𝜀
𝑖𝑗

𝐼∑︁
𝑟=1

𝐼∑︁
𝑠=1

𝑎𝑟𝜔𝑠𝑑
−𝜀
𝑟𝑠

, (3)

where transformed wages 𝜔𝑗 and transformed amenities 𝑎𝑖 are defined as

𝑎𝑖 = 𝐵𝑖𝑝
𝜀(𝛽−1)
𝑖 and 𝜔𝑗 = 𝐶𝑗𝑤

𝜀
𝑗 . (4)

We define the commuting costs between 𝑖𝑗 as 𝑑𝑖𝑗 = exp(𝜂𝑡𝑖𝑗) ≥ 1, where 𝑡𝑖𝑗 ≥ 0 is the generalised

commuting time between 𝑖 and 𝑗 that accounts for the mode choice set within 𝑖𝑗 and 𝜂 > 0 is a

cost parameter that translates generalised commuting time into costs.

We will demonstrate in Section 3.4 that the above-assumed nested structure of mode choice

implies that the generalised commuting time between two locations depends on the nest-specific

generalised commuting times between these locations, which we will refer to as the nest-specific

commuting time. More specifically, given two nests 𝑘 = 1, 2, the generalised commuting time 𝑡𝑖𝑗
is a standard log-sum:19

18Typically, commuters who travel by car also own a car. Accordingly, car ownership is a consequence of
choosing to commute by car.

19Generalised commuting time reflects the disutility of commuting between 2 locations, and therefore does not
have an intuitive order of magnitude. Therefore, we scale 𝑡𝑖𝑗 with 𝜓1

𝜅1
, similar to Tsivanidis (2023).
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𝑡𝑖𝑗 = log
[︃ 2∑︁
𝑘=1

exp
(︁
𝜓𝑘𝑡𝑘|𝑖𝑗

)︁]︃
, (5)

where 𝑡𝑘|𝑖𝑗 is the nest-specific commuting time, which we define further in the next subsection.

Conditional on residing in 𝑖, the probability of working in 𝑗 is:

𝜋𝑖𝑗|𝑖 =
𝜔𝑗𝑑

−𝜀
𝑖𝑗

𝐼∑︁
𝑟=1

𝐼∑︁
𝑠=1

𝜔𝑠𝑑
−𝜀
𝑟𝑠

. (6)

Similarly, the probability of residing in 𝑖, conditional on working in 𝑗 is:

𝜋𝑖𝑗|𝑗 =
𝑎𝑖𝑑

−𝜀
𝑖𝑗

𝐼∑︁
𝑟=1

𝐼∑︁
𝑠=1

𝑎𝑟𝑑
−𝜀
𝑟𝑠

. (7)

The reservation utility, which equals workers’ welfare, equals:

𝑢̄ = E[𝑢] = Γ
(︂
𝜀− 1
𝜀

)︂⎡⎣ 𝐼∑︁
𝑖=1

𝐼∑︁
𝑗=1

𝐵𝑖𝐶𝑗
(︁
𝑑𝑖𝑗𝑝

1−𝛽
𝑖

)︁−𝜀
(𝑤𝑗)𝜀

⎤⎦ 1
𝜀

, (8)

where Γ (·) is the gamma function.

3.4 Mode choice

Once a worker has chosen their residence-workplace pair 𝑖𝑗, they observe their idiosyncratic

preferences across modes 𝜑𝑖𝑗𝑚𝑜. Workers solve the commuter’s mode choice problem by choosing

the mode with the lowest generalised commuting time given 𝑖𝑗:

min
𝑚∈𝑀

{𝑡𝑖𝑗𝑚}. (9)

We define the mode-specific generalised commuting time as a linear function of commuting

time 𝜏𝑖𝑗𝑚 (which we observe):

𝑡𝑖𝑗𝑚𝑜 = 𝑏𝑚 + 𝜅𝑚𝜏𝑖𝑗𝑚 + 𝜑𝑖𝑗𝑚𝑜, (10)

where 𝑏𝑚 is a preference shifter for mode 𝑚 and 𝜅𝑚 denotes the mode-specific sensitivity to

commuting time. In the following, we refer to 𝜅𝑚 as the mode-specific commuting costs. For

Nested Logit travel demand, the idiosyncratic preferences across modes 𝜑𝑖𝑗𝑚𝑜 are drawn from a

Generalised Extreme Value distribution (GEV):
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𝐹 (𝜑𝑖𝑗𝑚𝑜) = exp

⎛⎜⎝−
2∑︁

𝑘=1

⎛⎝ ∑︁
𝑚∈M𝑘

exp
(︂

−𝜑𝑖𝑗𝑚𝑜
𝜓𝑘

)︂⎞⎠𝜓𝑘
⎞⎟⎠ , (11)

where 𝜓 governs the within-nest correlation.20 Standard results for GEV distributions allow us

to write the probability of choosing a mode 𝑚 conditional on a location-pair 𝑖𝑗 as two conditional

probabilities:

𝜋𝑚|𝑖𝑗 = 𝜋𝑘|𝑖𝑗 × 𝜋𝑚|𝑘𝑖𝑗 . (12)

We can express the probability of choosing nest 𝑘 given 𝑖𝑗 as:

𝜋𝑘|𝑖𝑗 =
exp

(︁
𝜓𝑘𝑡𝑘|𝑖𝑗

)︁
2∑︁

𝑛=1
exp

(︁
𝜓𝑛𝑡𝑛|𝑖𝑗

)︁ (13)

In (13), 𝑡𝑘|𝑖𝑗 is the nest-specific commuting time of nest 𝑘 within the location pair 𝑖𝑗. Since

the car nest is degenerate and contains only one alternative, we can write:

𝑡𝑘|𝑖𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︂
𝑏1
𝜓1

+ 𝜅1
𝜓1
𝜏𝑖𝑗1

)︂
, if 𝑘 = 1

log
∑︁
𝑚∈M2

exp
(︂
𝑏𝑚
𝜓2

+ 𝜅𝑚
𝜓2

𝜏𝑖𝑗𝑚

)︂
, if 𝑘 = 2

(14)

Consequently, the probability of choosing mode 𝑚 given a nest 𝑘 can be expressed as follows:

𝜋𝑚|𝑘,𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if 𝑘 = 1

exp
(︂
𝑏𝑚
𝜓2

+ 𝜅𝑚
𝜓2

𝜏𝑖𝑗𝑚

)︂
∑︁
𝑛∈M2

exp
(︂
𝑏𝑛
𝜓2

+ 𝜅𝑛
𝜓2
𝜏𝑖𝑗𝑛

)︂ , if 𝑘 = 2
. (15)

Knowing the probability of choosing a location pair 𝑖𝑗 in equation (3), the probability of choosing

a nest 𝑘 in equation (13) and a mode 𝑚 (15), we can derive the unconditional probability of

choosing any given 𝑖𝑗𝑚 combination as 𝜋𝑖𝑗𝑚 = 𝜋𝑖𝑗 × 𝜋𝑘|𝑖𝑗 × 𝜋𝑚|𝑘,𝑖𝑗 .

3.5 Car congestion

We allow car commuting times along the road network to be endogenous due to congestion.

We model car congestion as a ‘bathtub’ that fills with traffic (Arnott, 2013; Fosgerau, 2015).

Drivers continuously adjust their route choices to avoid heavily congested roads, leading to an

equilibrium where congestion is evenly distributed throughout the area. This results in a stable
20Note that 1 − 𝜓2

𝑘 is the correlation between the idiosyncratic shocks, 𝜑𝑖𝑗𝑚𝑜, for any two modes within the
same nest.
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relationship between the car density and average speed across the area considered (Daganzo,

2007; Daganzo et al., 2011). Hence, congested commuting time by car (𝑚 = 1), 𝜏𝑖𝑗1, is assumed

to be proportional to free-flow travel time, 𝜏 𝑓𝑖𝑗1, and a function of the density of car traffic at

the workplace, Λ𝑀𝑗 , as follows:

𝜏𝑖𝑗1 = 𝜏 𝑓𝑖𝑗1𝑇𝑅𝑖𝑇𝑀𝑗 exp(𝜆1Λ𝑀𝑗 + 𝜆2(Λ𝑀𝑗)2), (16)

where 𝑇𝑅𝑖 and 𝑇𝑀𝑗 are location-specific congestion characteristics at the residence and the

workplace, respectively, and where 𝜆1 and 𝜆2 determine the marginal effect. The semi-elasticity

of car density to commuting time is then equal to 𝜆1 +2𝜆2Λ𝑀𝑗 . Note that if 𝜆2 = 0, then we have

a standard exponential relationship, which implies that the relationship between commuting

time and density is convex. Our assumption that car congestion happens predominantly at the

workplace is consistent with the notion that workplace locations are more spatially concentrated

than residence locations.

The total number of car commuters in 𝑗 equals the total number of commuters to the

workplace 𝑗 times the probability of commuting by car, 𝐻𝑀𝑗1 = ∑︀
𝑖 𝜋𝑘=1|𝑖𝑗 ×𝐻𝑀𝑖𝑗 . We aim to

take into account that workers are not only affected by congestion at the workplace but also

at nearby locations. Consequently, the density of car traffic at workplace 𝑗, which captured the

ratio of car commuters to road lanes, is spatially weighted and written as:

Λ𝑀𝑗 =
𝐼∑︁
𝑖=1

𝐻𝑀𝑖1
𝑅𝑖1

exp(−𝜅1𝜏𝑖𝑗1), (17)

where 𝜅1 denotes the car commuting cost parameter, which governs the spatial decay of car

density and 𝑅𝑖1 is the number of road lane kilometers in location 𝑖.

3.6 Infrastructure land, car lanes and bicycle lanes

The total amount of land used for infrastructure in each location is assumed to be fixed and given

by 𝜄𝑖𝐿𝑖. For simplicity we assume that 𝜄𝑖𝐿𝑖 only contains bicycle lanes and car road infrastructure

so we ignore land used for public transport infrastructure and sidewalks. Let 𝑅𝑖 be the total

amount of lanes, then:

𝜄𝑖𝐿𝑖 = 𝑅𝑖 = ℓ1𝑅𝑖1 + ℓ2𝑅𝑖2, (18)

where 𝑅𝑖1 denote the km of car (𝑚 = 1) lanes and 𝑅𝑖2 capture the km of bicycle (𝑚 = 2) lanes.

ℓ1 and ℓ2 are aggregate scale parameters that transform car and bicycle lanes into land used

for infrastructure. Since 𝜄𝑖𝐿𝑖 is assumed to be fixed, adding a bicycle lane reduces the space

available for existing car lanes. This assumption is realistic, especially in inner cities, where
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expanding roadways is typically challenging due to space constraints.

Investments in cycling infrastructure that increase the number of bicycle lanes affect car

congestion in two ways. First, additional cycling lanes decrease the number of road lanes. Second,

as cycling becomes more attractive, workers will substitute away from car commuting, which

decreases the number of car commuters. The overall effect of bicycle infrastructure investments

on car congestion therefore depends on the relative strength of either impact.

3.7 Production and agglomeration

Firms produce a single final good, which is costlessly traded between locations, and is chosen as

the numéraire. Production occurs under perfect competition and constant returns to scale.21 It

takes on the following Cobb-Douglas form:

𝑦𝑗 = 𝐴𝑗 (𝜍𝐻𝑀𝑗)𝛼 (𝐹𝑀𝑗)1−𝛼, (19)

where 𝑦𝑗 is the output of the final good in workplace 𝑗, 𝐴𝑗 is the final goods productivity, 𝐻𝑀𝑗

is the total workplace employment, and 𝐹𝑀𝑗 is the floor space used for production, which has

price 𝑝𝑖. 𝜍 < 1 is a scale parameter that accounts for the fact that workers consume on average

less office space than residents consume in living space.22

With profit maximization, the total commercial floor space consumption at a certain location

can be derived as follows:

𝐹𝑀𝑗 =

⎛⎝𝜔1/𝜀
𝑗

𝛼𝐴𝑗

⎞⎠1/(1−𝛼)

𝜍𝐻𝑀𝑗 . (20)

3.8 Production and amenity spillovers

We additionally assume that there are productivity spillovers from other locations. Consequently,

the final good productivity,𝐴𝑗 , consists of an exogenous productivity part,𝐴𝑗 , and an endogenous

part defined by employment density in all other locations weighted by the travel time to get

there:

𝐴𝑗 = 𝐴𝑗

(︃
𝐼∑︁
𝑖=1

𝐻𝑀𝑖

(1 − 𝜄𝑖)𝐿𝑖
exp(−𝛿𝜏𝑖𝑗1)

)︃𝛾
, (21)

21We don’t explicitly include subsidised employer car parking, as it is the consequence of a combination of
distorting income taxation (employer parking is not taxed as a benefit in kind) and minimum parking requirements
policies (Katz and Mankiw, 1985; Gutiérrez-i Puigarnau and Van Ommeren, 2011). In the Netherlands, minimum
parking requirements are typically very mild.

22Following Koster (2024), 𝜍 is chosen such that the ratio of residential to commercial floor space use
(
∑︀𝐼

𝑗=1 𝐹𝑅𝑗)/(
∑︀𝐼

𝑗=1 𝐹𝑀𝑗) matches the observed total share in the data.
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where 𝛿 captures the spatial decay of agglomeration, while 𝛾 captures the agglomeration elasticity.

Because we find that the majority of business trips in the OViN data are made by car we assume

that business trips are made by car.

Analogous to productivity, amenity spillovers travel along the road network and are generated

through population density from locations around 𝑗 weighted by the travel time to get there.

Hence, amenities consist of exogenous component 𝐵̄𝑖 and an endogenous component that is

dependent on the population density at all other locations:

𝐵𝑖 = 𝐵̄𝑖

⎛⎝ 𝐼∑︁
𝑗=1

𝐻𝑅𝑗

(1 − 𝜄𝑗)𝐿𝑗
exp(−𝜌𝜏𝑖𝑗1)

⎞⎠𝜐 , (22)

where 𝜐 captures the amenity elasticity and 𝜌 is the spatial decay of the amenities. To maintain

consistency, we use car travel times here, as OViN surveys indicate that most shopping and

recreational trips are made by car. However, a significant portion of shopping and recreational

trips are also completed by bicycle. Therefore, in our structural estimation, we also present

results where 𝜐 and 𝜌 are estimated using bicycle travel times, 𝜏𝑖𝑗2, which leads to very similar

results.

3.9 Land market and construction

The total floor space in each location, 𝐹𝑖, is equal to the sum of demand for residential and

commercial floor space. Floor space is supplied in a competitive construction market and uses

developed land (1 − 𝜄𝑖)𝐿𝑖 and capital 𝐾𝑖 as input. We assume that capital has a common price

𝑟 for all locations, while the price for floor space, 𝑝𝑖, varies between locations. We assume that

the production function of floor space takes the Cobb-Douglas form

𝐹𝑖 = 𝐹𝑅𝑖 + 𝐹𝑀𝑖 = ϒ𝑖𝐾
𝜇
𝑖 ((1 − 𝜄𝑖)𝐿𝑖)1−𝜇 , (23)

where ϒ𝑖 defines the innate supply conditions at location 𝑖, similar to Koster (2024). Given (23),

the first-order condition for optimal capital use becomes

𝐾*
𝑖 = (𝜇ϒ𝑖𝑝𝑖)

1
1−𝜇 𝐿𝑖 (24)

where we have normalised the price of capital, 𝑟, to 1.
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3.10 Equilibrium

In equilibrium, profits and utility are maximised. Decisions on the improvement of the bicy-

cle infrastructure network, which directly impact commuting costs, are taken by an absentee

central planner and, hence, are not anticipated. An equilibrium requires the factor markets to

clear. That means, given model parameters {𝛼, 𝛽, 𝜇, 𝛾, 𝛿, 𝜌, 𝜐, 𝜆, 𝜂, 𝜀, 𝜓2, 𝜅𝑚, 𝑏𝑚}, ∀𝑚, for any

worker and land vectors with elements {𝐻𝑅𝑖, 𝐻𝑀𝑗 , 𝐹𝑅𝑖, 𝐹𝑀𝑗 , 𝑅𝑗1}, any commuting time vector

with elements {𝜏𝑖𝑗𝑚}, ∀𝑚, and any additional exogenous location characteristics with elements

{𝐵𝑖, 𝐶𝑖, 𝐴𝑗 , 𝐵𝑖,𝐾𝑖}, a competitive equilibrium is a set of endogenous vectors with elements

{𝑝𝑖, 𝑤𝑗 , 𝜃𝑖} that determine endogenously {𝜋𝑖𝑗𝑚} such that for all locations 𝑖 the commuting

market and the land market clear.23

Commuting-market clearing. In equilibrium, the number of workers in 𝑗 equals the sum over

the residential population that commutes to workplace 𝑗. Equivalently, the number of residents

in 𝑖 equals the sum over the workplace population that commutes from residence location 𝑖.

𝐻𝑅𝑖 =
𝐼∑︁
𝑗=1

𝜋𝑖𝑗|𝑗𝐻𝑀𝑗 and 𝐻𝑀𝑗 =
𝐼∑︁
𝑖=1

𝜋𝑖𝑗|𝑖𝐻𝑅𝑖. (25)

Land-market clearing. An equilibrium requires the absence of arbitrage in the supply of resi-

dential and commercial floor space. Total demand for floor space should equal total supply as in

equation (23). Residential land market clearing implies that the total supplied residential floor

space (𝐹𝑅𝑖) is demanded by residents in all locations 𝑖:

𝐹𝑅𝑖 = (1 − 𝜃𝑖)𝐹𝑖 = (1 − 𝛽)E[𝑤̄𝑖]
𝑝𝑖

𝐻𝑅𝑖, (26)

where E[𝑤̄𝑖] = ∑︀𝐿
𝑠=1 𝜋𝑖𝑠|𝑖𝑤𝑠 is the expected wage at the residence. Likewise, the commercial

land market equilibrium requires that the total supplied commercial floor space (𝐹𝑀𝑗) equals

the demand for floor space by the production sector across all locations 𝑗:

𝐹𝑀𝑗 = 𝜃𝑗𝐹𝑗 =

⎛⎜⎝ 𝜔𝑗

𝛼𝐴𝑗𝐶
1
𝜀
𝑗

⎞⎟⎠
1

1−𝛼

𝜍𝐻𝑀𝑗 (27)

23The equilibrium is unique as long as agglomeration forces are smaller than dispersion forces (see Allen
and Arkolakis, 2014; Desmet et al., 2018; Allen et al., 2024). As we will show in the structural estimation later,
agglomeration forces, both, in terms of productivity and amenity, play a minor role in our model in comparison
to dispersion forces. We have confirmed this with a numerical analysis à la Allen et al. (2024) and can therefore
conclude that the equilibrium is unique.

20



Welfare. The welfare effects of cycling and cycling infrastructure improvements will be evalu-

ated by the change in expected utility once cycling is no longer an option or cycling infrastructure

is removed. The change in expected utility can be interpreted as a Hicksian compensation varia-

tion. It indicates the additional income that is needed in order to reach the same level of utility

than in the baseline scenario. The equivalent income that is needed to reach the initial utility

level, Δ𝑤̄, can be derived from the ratio of expected utilities using (8):

Δ𝑤̄ = 𝑢̄1
𝑢̄0

=

⎛⎝ 𝐼∑︁
𝑟=1

𝐼∑︁
𝑠=1

𝐵𝑖,1𝐶𝑗,1

⎛⎝𝑤𝑗,1 exp (−𝜂𝑡𝑖𝑗,1)
𝑝1−𝛽
𝑖,1

⎞⎠𝜀⎞⎠
1
𝜀

⎛⎝ 𝐼∑︁
𝑟=1

𝐼∑︁
𝑠=1

𝐵𝑖,0𝐶𝑗,0

⎛⎝𝑤𝑗,0 exp (−𝜂𝑡𝑖𝑗,0)
𝑝1−𝛽
𝑖,0

⎞⎠𝜀⎞⎠
1
𝜀

(28)

where the subscripts {0, 1} refer to the baseline and a counterfactual scenario, respectively.

4 Structural estimation

This section introduces the methodology to estimate the necessary model parameters to solve the

general equilibrium model as presented in Section 3. Our model is estimated for the Netherlands

for the baseline year 2016 and the 12,782 neighbourhoods. We exclude neighbourhoods that

have neither workplace employment nor residents. The absence of economic activity is assumed

to be due to exogenous location-specific fundamentals (e.g., the presence of water) that do not

change in the counterfactual analysis.

We set the expenditure of production on commercial floor space at 1 − 𝛼 = 0.15 and the

share of household expenditure on floor space at 1 − 𝛽 = 0.31, both in line with official figures

from Statistics Netherlands (see Statistics Netherlands, 2016a,c, respectively). Furthermore, we

assume the capital share in the construction costs 𝜇 = 0.75 following Ahlfeldt et al. (2015)

and Combes et al. (2010a). We set the commercial floor space scale parameter 𝜍 following the

methodology in Koster (2024).

In the following sections, we detail the structural estimation of the remaining parameters,

explaining the methodology and results. We begin by discussing the estimation of mode choice

in Section 4.1 and the commuting cost parameters in Section 4.2. The congestion elasticity

is estimated in Section 4.3, followed by the remaining parameters related to productivity and

amenities in Section 4.4. Table 2 summarises all baseline parameters estimated and used in the

model, serving as a useful reference for the subsequent discussion.
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Table 2 – Model parameter overview

Cobb-Douglas parameters

1 − 𝛼 0.150 Firm expenditure share on commercial floor space Statistics Netherlands (2016a)

1 − 𝛽 0.310 Worker expenditure share on residential floor space Statistics Netherlands (2016c)

𝜇 0.750 Capital share in construction costs Ahlfeldt et al. (2015) and Combes et al.
(2010a)

Mode choice parameters

𝜅1 -0.070 Commuting time cost, car See column (6), Table 3

𝜅2 -0.089 Commuting time cost, bicycle See column (6), Table 3

𝜅3 -0.148 Commuting time cost, walk See column (6), Table 3

𝜅4 -0.039 Commuting time cost, public transport See column (6), Table 3

𝑏1 — Preference shifter for car Car is the reference mode

𝑏2 1.30 Preference shifter for bicycle Calibrated, Statistics Netherlands data

𝑏3 1.97 Preference shifter for walk Calibrated, Statistics Netherlands data

𝑏4 -2.19 Preference shifter for public transport Calibrated, Statistics Netherlands data

𝜓2 0.972 Within correlation of non-car nest See column (6), Table 3

Gravity parameters

𝜈 = 𝜂𝜀 0.086 Commuting semi-elasticity See column (1), Table 4

𝜀 6.03 Productivity heterogeneity See column (1), Table 5

Congestion, agglomeration, amenities

𝜆 0.014 Congestion elasticity See column (4), Table 6

𝜆2 0.004 Congestion elasticity (squared term) See column (4), Table 6

𝛾 0.023 Agglomeration elasticity See column (2), Table 7

𝛿 0.078 Agglomeration decay See column (2), Table 7

𝜐 0.045 Residential amenities elasticity See column (4), Table 7

𝜌 0.095 Residential amenity decay See column (4), Table 7

Note: We report preference shifters 𝑏𝑚 that are re-calibrated such that the mode shares according to the
model equal the observed mode shares in the OViN survey for 2016-2022 (as in Table 1, Panel A), following
the procedure outlined by Train (2009). Further details on the re-calibration exercise are provided in Section
B.1 of the Appendix.

4.1 Mode choice estimation

Estimation and identification. The demand for travel modes can be expressed as the probability

that a worker chooses mode 𝑚. Using the model structure, this probability can be decomposed

into the probability that a worker chooses the nest containing 𝑚 and the probability the worker

chooses the mode from the mode options available in that nest:

𝜋𝑚|𝑖𝑗 = 𝜋𝑘|𝑖𝑗 × 𝜋𝑚|𝑘𝑖𝑗 (29)

=
exp

(︁
𝜓𝑘𝑡𝑘|𝑖𝑗

)︁
2∑︁

𝑛=1
exp

(︁
𝜓𝑛𝑡𝑛|𝑖𝑗

)︁ ×
exp

(︂
𝑏𝑚
𝜓𝑘

+ 𝜅𝑚
𝜓𝑘

𝜏𝑖𝑗𝑚

)︂
∑︁
𝑛∈M𝑘

exp
(︂
𝑏𝑛
𝜓𝑘

+ 𝜅𝑛
𝜓𝑘
𝜏𝑖𝑗𝑛

)︂
.
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One can estimate the demand for travel modes as defined by (29) using a Nested Logit model

that is estimated with maximum likelihood. We employ trip-level data using the 2016-2022

OViN Survey (see Statistics Netherlands, 2016b). This Nested Logit approach will identify the

sensitivity of commuting time for various modes, 𝜅𝑚, and the within-correlation of mode choices

of the non-car nest, 𝜓2. This approach analyses mode choice conditional on the selected location

pair, so that endogeneity concerns are limited. However, two potential issues merit attention:

omitted variable bias and reverse causality.

Omitted variable bias could occur if workers with specific characteristics tend to choose

certain modes. For example, low-income workers might predominantly bicycle or walk due to the

lower cost, meaning that the estimated parameters may reflect not just sensitivity to commuting

time, but also the behaviour of low-income workers. To address this, we control for various worker

characteristics, including age, sex, education, and income, as well as day of the week (which

accounts for day-of-the-week differences in travel times). Importantly, our analysis shows that

excluding these controls has minimal impact on the results, suggesting that omitted variable

bias because of sorting based on individual differences is not a major concern.

Reverse causality is another concern. For example, if many workers prefer to take public

transport between locations 𝑖 and 𝑗, local governments might invest in improving the public

transport infrastructure at this link, thus reducing commute times. Another example is road

congestion, where longer commuting times are the result of higher levels of demand. To address

this issue, we apply a control function approach in which we instrument commuting times using

the Euclidean distance between locations 𝑖 and 𝑗, a measure that is not affected by the (mode-

specific) flow of commuters between these locations. The control function approach implies that

in the first stage of the estimation process, the mode-specific commuting times are regressed on

the instrument with controls. The first stage errors are then included as control functions in the

second-stage maximum likelihood estimation (Blundell and Powell, 2003).

Results. Table 3 presents the results. We start with a specification where we impose that the

parameter 𝜅 is the same for all modes. We find a parameter of about −0.08, see column (1).

This estimate remains virtually unchanged when we add worker characteristics (column (2)), or

instrument for commuting time using the Euclidean distance (column (3)). This parameter is

closely aligned with the findings of Ahlfeldt et al. (2015) and others.

In columns (4)-(6), we allow the 𝜅 to differ between modes.24 Columns (4) and (5) suggest

that there are non-negligible differences in the value of 𝜅 for different modes. This conclusion is

reinforced when we instrument for commuting time in column (6), which is our preferred speci-
24To allow for this is nowadays common in the transport literature, see for example Kouwenhoven et al. (2014).
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Table 3 – Mode choice parameter estimation

Dependent variable: Mode choice

Single 𝜅𝑚 = 𝜅 Mode-specific 𝜅𝑚

(1) (2) (3) (4) (5) (6)
NL NL NL-CF NL NL NL-CF

Commuting time, 𝜅 -0.077*** -0.077*** -0.080***
(0.001) (0.001) (0.001)

Car time, 𝜅1 -0.097*** -0.094*** -0.070***
(0.002) (0.002) (0.004)

Bicycle time, 𝜅2 -0.093*** -0.093*** -0.089***
(0.001) (0.001) (0.001)

Walk time, 𝜅3 -0.128*** -0.128*** -0.148***
(0.005) (0.005) (0.006)

Public transport time, 𝜅4 -0.065*** -0.063*** -0.039***
(0.002) (0.002) (0.003)

Non-car nest parameter, 𝜓2 0.590*** 0.603*** 0.531*** 0.849*** 0.846*** 0.972***
(0.013) (0.014) (0.014) (0.021) (0.022) (0.031)

Worker characteristics ✓ ✓ ✓ ✓

First stage errors ✓ ✓

Number of observations 130,240 130,240 130,240 130,240 130,240 130,240
Pseudo-𝑅2 0.293 0.295 0.304 0.307 0.317 0.320
First stage F -statistic 4,940 4,940
Notes: Nested logit model results. Data is sourced from the OViN survey for the years 2016-2022, where workers can
choose between four modes (walk, bicycle, car, public transport). Worker characteristics refer to age, sex, education,
income and day of the week. Car is the only mode within the car nest, so 𝜓1 = 1. Columns (1) and (2) imposes the
same 𝜅 for all modes. Columns (3) and (4) use mode-specific commuting time parameters 𝜅𝑚. In columns (2) and
(4), commuting time is instrumented with the Euclidean distance for each mode using a control function approach.
Bootstrapped standard errors (100 replications) clustered at the 𝑖 and 𝑗 level in parentheses. *** p < 0.01, ** p <
0.05, * p < 0.1.

fication. We observe that the estimated parameters change when we instrument for commuting

time, which did not occur when we assumed the same 𝜅 for all modes. This is reasonable because

the causes of endogeneity differ between the various modes of transport.25 In line with the idea

that very few people bicycle or walk for very long times (e.g., more than 60 minutes), and that

for long distances, car drivers switch to train, we find (in absolute values): 𝜅̂4 < 𝜅̂1 < 𝜅̂2 < 𝜅̂3.

Consequently, the marginal time costs are the highest for walking, followed by bicycling, car use,

and public transport. These results are consistent with the notion that workers tend to walk

shorter distances, then switch to cycling longer distances, then use the car, and then to using

the train. The marginal costs of distance (rather than time) also depend on the speed of the

specific mode. Typically, for car and public transport users, speed levels are much higher for

commuting trips between cities compared to other modes, making the marginal cost of distance

for car and public transport significantly lower than for cycling and walking.
25For instance, public transport infrastructure provision may be more responsive to commuting flows compared

to the provision of sidewalks for pedestrians.

24



We also estimate the correlation parameter among the alternatives within the non-car nest,

𝜓2. When 𝜅 is imposed to be the same for all modes, we get estimates within the range from 0.53

to 0.60, see columns (1)-(3). When we allow 𝜅 to be different among modes, 𝜓2 is substantially

closer to one, the value implied by the multinomial logit model. In our preferred specification in

column (6), the estimate of 𝜓2 is not statistically different from one.

Substitution between modes plays a central role in this paper. We aim to match the (aggre-

gate) mode shares implied by the model with the ones we observe in the data. To achieve this,

we recalibrate the mode-specific preference shifters 𝑏𝑚 so that the mode shares are equal to the

simulated mode shares using a recalibration procedure outlined by Train (2009) (we provide

more details in Appendix B.1). The intercepts shown in Table 2 reveal that the workers prefer to

cycle and walk over driving. In contrast, workers generally have a distaste for public transport

compared to driving.

4.2 Gravity estimation, wages and commuting heterogeneity

Estimation and identification. To estimate the gravity equation, we assume that the generalised

commuting time 𝑡𝑖𝑗 determines 𝑖𝑗 location choices of workers, similar to Tsivanidis (2023). Given

the estimates of the mode choice parameters, the generalised commuting time 𝑡𝑖𝑗 can be calculated

for each combination of residence and workplace. Given this generalised commuting time, we

estimate the semi-elasticity of the commuting time 𝜈.

To be more precise, first we calculate the nest-specific commuting times 𝑡𝑘=1|𝑖𝑗 and 𝑡𝑘=2|𝑖𝑗

using equation (14), given the estimated mode choice parameters {𝑏̂𝑚, 𝜅̂𝑚}, ∀𝑚 and 𝜓2. Next, we

calculate the generalised commute time 𝑡𝑖𝑗 using 𝑡𝑘=1|𝑖𝑗 and 𝑡𝑘=2|𝑖𝑗 and (5). Then, we log-linearise

(3). Recall that 𝑑𝑖𝑗 = exp(𝜂𝑡𝑖𝑗). We then obtain:

E[𝑁𝑖𝑗 ] = exp(−𝜈𝑡𝑖𝑗 + 𝜐𝑖 + 𝜐𝑗), (30)

where 𝜈 = 𝜂𝜀, E[𝑁𝑖𝑗 ] ≡ 𝜋𝑖𝑗𝐻̄ refers to the expected commuting flow, 𝜐𝑗 are residence and

workplace fixed effects that absorb residential amenities, workplace amenities, and workplace

wages. The commuting semi-elasticity 𝜈 is the parameter of interest. We estimate this parameter

using (30) by PPML with observed commuting flow data from the 2016-2022 OViN Survey. Given

12,782 neighbourhoods, we observe flows between 163,379,524 flows neighbourhood pairs. PPML

allows the observed commuting flow data to have a large share of zeros.

Given estimates of 𝜈, we obtain the transformed wages 𝜔𝑗 = 𝐶𝑗𝑤
𝜀
𝑗 using the commuting

market clearing condition (25). Subsequently, we estimate the commuting heterogeneity param-

eter 𝜀 following the approach outlined in Ahlfeldt et al. (2015). The idea is that the variances
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Table 4 – Gravity regression

Dependent variable: Commuting flow, 𝑁𝑖𝑗

(1) (2)
PPML PPML

Generalised commuting time, 𝜈 0.086***
(0.003)

Average commuting time 0.076***
(0.000)

Residence fixed effects ✓ ✓

Workplace fixed effects ✓ ✓

Number of observations 163,379,524 163,379,524
Pseudo-𝑅2 0.45 0.37
Notes: Data from the 2016-2022 OViN Survey. Data refer to residence-work
commuting flows 𝑁𝑖𝑗 and generalised commuting times 𝑡𝑖𝑗 , calculated using
Table 3 and equation (5). Column (1) is a PPML regression with generalised
commuting time. Column (2) is a PPML regression as in Ahlfeldt et al. (2015)
without mode choice, where we use an average of the car and public transport
commuting times as the commuting time between 𝑖 and 𝑗. Bootstrapped standard
errors (100 replications) clustered at the 𝑖 and 𝑗 levels in parentheses. *** p <
0.01, ** p < 0.05, * p < 0.1.

of observed log wages at a certain location, 𝜎2
log𝑤𝑗 , and the variances of log transformed wages

at this location, 𝜎2
log𝜔𝑗 , are related as follows:

𝜎2
log𝑤𝑗 =

(︂1
𝜀

)︂2
𝜎2

log𝜔𝑗 + 𝜒𝑗 , (31)

where 𝜒𝑗 refers to random error.

Results. Table 4 presents the results for the commuting time semi-elasticity. We find 𝜈 = 0.086.

This estimate of the generalised commuting time decay is consistent with the estimate range

found in previous studies that have estimated commuting time elasticities for one or more modes

(Ahlfeldt et al., 2015; Dericks and Koster, 2021; Koster, 2024).

In column (2), we explore an alternative method to the above Nested Logit approach by

calculating the average commuting times across car and public transport, following the method

used in Ahlfeldt et al. (2015). This approach provides a very similar commuting time elasticity

of 0.076, which increases confidence in the accuracy of the results.26 The main disadvantage

of using the average commuting time is that this method does not allow for any substitution

between different modes. Consequently, our approach, which incorporates changes in mode choice

in the counterfactual, is preferred, at least when these mode changes are non-negligible.

In Table 5 we present results from the estimation equation (31). First, using individual wage
26The latter elasticity is slightly lower. This makes sense as the average commuting time may be rewritten as

the generalised commuting time plus measurement error. Random measurement error typically leads to a bias
towards zero.
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Table 5 – Commuting heterogeneity parameter

Dependent variable: Variance of observed wages

Municipality level District level

(1) (2) (3)
OLS OLS OLS

Commuting heterogenity, 𝜀 6.03*** 5.43*** 5.76***
(0.011) (0.000) (0.000)

Municipality fixed effects ✓

Number of observations 384 2,416 2,416
Pseudo-𝑅2 0.07 0.07 0.20
Notes: Wage data is sourced from the income registry data SPOLIS (Salaris Polis Adminis-
tratie). Column (1) estimates equation (31) is based on variances at the municipality level.
Columns (2) and (3) employ variances at the district level. Column (3) adds municipality
fixed effects. Bootstrapped standard errors (100 replications) clustered at the 𝑖 and 𝑗 level in
parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

data, we calculate the wage variances at the municipality level (see column (1)). The implied

𝜀 = 6.03 is very similar to previous estimates (Ahlfeldt et al., 2015, find a value of 𝜀 = 6.6 for

Berlin, while Koster, 2024, find 𝜀 = 5.5 for England). Second, we calculate the wage variances at

the district level, which leads to a very similar, but smaller, value of commuting heterogeneity

(see column (2)). The latter result is not materially influenced when we additionally include

municipality fixed effects, see column (3).

4.3 Car congestion parameters

Estimation and identification. We also estimate the congestion externality parameters, 𝜆1 and

𝜆2, based on the structure of the model. Rewriting (16) and taking logs gives the following

equation:

log

⎛⎝𝜏𝑖𝑗1
𝜏 𝑓𝑖𝑗1

⎞⎠ = 𝜆1Λ𝑀𝑗 + 𝜆2(Λ𝑀𝑗)2 + log(𝑇𝑅𝑖) + log(𝑇𝑀𝑗) + 𝜉𝑖𝑗1, (32)

where 𝑇𝑅𝑖 and 𝑇𝑀𝑗 capture residence and workplace fixed-effects, respectively, and 𝜉𝑖𝑗1 is a

residual that includes a common constant. Here, the dependent variable is the logarithm of the

ratio of congested to free-flow car commuting costs, 𝜏𝑖𝑗1/𝜏 𝑓𝑖𝑗1, which is calculated using road

network travel times for free-flow conditions and imputed Google travel times for congested

conditions (see Appendix A.4 for details). The main independent variable of interest, car traffic

density, Λ𝑗𝑀 , is equal to the ratio of the number of car commuters to the workplace location,

𝐻𝑀𝑗1, and the car lane kilometres per workplace location (see equation (17)), which is derived

the OSM road network data.

There may be concern that when estimating equation (32) that Λ𝑀𝑗 is endogenous due to

reverse causality. For example, shorter commuting times could attract residents and workers
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who prefer shorter commutes, increasing density. To address this, we employ a classical strategy

used in the literature on agglomeration economies. More specifically, we instrument traffic

densities using the population density of 1900 (see Gaigné et al., 2022). This historic instrument

addresses the issue that decisions regarding workplace locations are influenced by the placement

of infrastructure, as population density in 1900 is not expected to be correlated to current

infrastructure supply, for example, because highways and roads suitable for cars did not exist

around that time and commuting to work over longer distances was still uncommon.

This IV procedure implies that we estimate the congestion parameters of interest {𝜆𝑖} in

a two-step procedure. In the first step, we recover the workplace fixed effects, log 𝑇𝑀𝑗 , with a

regression where we condition only on residential fixed effects:

log

⎛⎝𝜏𝑖𝑗1
𝜏 𝑓𝑖𝑗1

⎞⎠ = log 𝑇𝑅𝑖 + log 𝑇𝑀𝑗 + 𝜒̃𝑖𝑗1.

Here, log 𝑇𝑅𝑖 refers to a residential fixed effect, log 𝑇𝑀𝑗 refers to a workplace location fixed effect

and 𝜒̃𝑖𝑗1 refers to an error term.

In the second step, we regress the recovered workplace fixed effects on traffic density, where

we instrument the latter with the historic population density,𝐻𝑅𝑖,1900/((1−𝜄)𝐿𝑖), using a control

function approach. The latter approach implies that one controls for the quadratic function of

the first stage error, which is obtained by regressing Λ𝑀𝑗 on the instrument. Consequently, we

estimate the following equations:

Λ𝑀𝑗 = 𝜆̃1

𝐼∑︁
𝑖

exp(−𝜅1𝜏𝑖𝑗1) 𝐻𝑅𝑖,1900
(1 − 𝜄)𝐿𝑖

+ 𝜆̃2

(︃
𝐼∑︁
𝑖

exp(−𝜅1𝜏𝑖𝑗1) 𝐻𝑅𝑖,1900
(1 − 𝜄)𝐿𝑖

)︃2

+ 𝜉𝑗 ,

log 𝑇𝑀𝑗 = 𝜆1Λ𝑀𝑗 + 𝜆2(Λ𝑀𝑗)2 + 𝛽1𝜉𝑗 + 𝛽2(𝜉𝑗)2 + 𝜒𝑗 ,

(33)

where 𝜉𝑗 and 𝜒𝑗 refer to error terms and 𝛽1, 𝛽2, 𝜆̃1, 𝜆̃2, 𝜆1 and 𝜆2 are coefficients to be estimated.

Results. Table 6 presents the results from estimating equations (32) using OLS and (33) using

a control function approach where we use historic population density as an instrument. First,

we represent a specification where we include car density but not its square. The OLS estimate,

reported in column (1) suggests that the semi-elasticity of car density 𝜆̂1 = 0.015. Accounting

for endogeneity in column (2) increases it to 0.018, which implies a mild level of congestion.

According to this specification, at the most congested locations (in Amsterdam), travel times are

about 10% higher due to congestion. The size of this increase suggests marginal external costs

that are considerably lower than observed in major cities around the world (Yang et al., 2020;
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Table 6 – Congestion elasticity

Dependent variable: Recovered workplace fixed effect, log 𝑇𝑀𝑗

(1) (2) (3) (4)
OLS CF OLS CF

Car density, 𝜆1 0.013*** 0.018*** 0.013*** 0.014***
(0.000) (0.001) (0.000) (0.000)

(Car density)2, 𝜆2 0.004*** 0.004***
(0.000) (0.000)

First stage error ✓ ✓

Number of observations 12,782 12,782 12,782 12,782
First stage F -statistic 15,214 17,732
Notes: CF refers to control function approach. Column (1) estimates log workplace
fixed effects on car density following (32), that has been divided in a two-step
approach. In column (2), we instrument car density using historic population
density in 1900. Column (3) estimates log workplace fixed effects on car density
and car density squared. In column (4), we instrument car density with historic
population density in 1900 and its squared counterpart. Bootstrapped standard
errors (100 replications) clustered at the 𝑖 and 𝑗 levels in parentheses. *** p <
0.01, ** p < 0.05, * p < 0.1. First stage results are reported in Table B2.

Russo et al., 2021), but at the same time confirms anecdotal evidence suggesting that traffic

congestion in the Netherlands is mild.

Arguably, this specification is misspecified because it assumes that the semi-elasticity is a

constant, and therefore does not allow for strongly convex effects as car traffic densities increase,

for example, because congestion effects only become substantial once densities reach a certain

threshold (Daganzo, 2007; Daganzo et al., 2011). Columns (3) and (4) therefore also include the

square of car density. The OLS and the control function results support the view that the effect

of car density is strongly convex. Both approaches indicate that 𝜆̂2 = 0.004 > 0. These results

imply that the semi-elasticity is close to zero for the lowest car densities and about 0.038 for the

highest densities. Still, this specification also implies that congestion is very mild. In the most

congested locations, travel times are still only 11% higher compared to free flow. We consider

column (4) as the baseline specification.

4.4 Productivity and amenity elasticities

Estimation and identification. The final goods productivity, 𝐴𝑗 , can be recovered from the

model up to a normalisation constant. Given the optimal use of commercial floor space and the

optimal use of labour, the final goods productivity can be written as:

𝐴𝑗 = 1
(1 − 𝛼)1−𝛼𝛼𝛼

𝑝1−𝛼
𝑗 𝜔̂

𝛼/𝜀
𝑗 . (34)
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Analogously, the endogenous amenities, 𝐵𝑖, can be recovered given the optimal use of residential

floor space and workers as follows:

𝐵𝑖 =
(︂
𝐻𝑅𝑖

𝑊𝑖

)︂𝜀
𝑝1−𝛽
𝑖 , (35)

where 𝑊𝑖 is a measure of commuting market access, which can be expressed as:

𝑊𝑖 =
𝐼∑︁
𝑗=1

𝑒−𝜈𝑡𝑖𝑗 𝜔̂𝑗 . (36)

The final goods productivity and endogenous amenities are then calculated using parameters

of previous subsections {𝛼, 𝛽, 𝜀, 𝜈}, estimated transformed wages (𝜔̂𝑗), and observed data on

housing prices (𝑝𝑖). Log-linearising equations (21) and (22) gives

log𝐴𝑗 = log(𝐴𝑗) + 𝛾 log
(︃

𝐼∑︁
𝑖=1

𝐻𝑀𝑖

(1 − 𝜄𝑖)𝐿𝑖
exp(−𝛿𝜏𝑖𝑗1)

)︃
+ 𝜉𝑀𝑗 (37)

log 𝐵̂𝑖 = log(𝐵̄𝑖) + 𝜐 log

⎛⎝ 𝐼∑︁
𝑗=1

𝐻𝑅𝑗

(1 − 𝜄𝑗)𝐿𝑗
exp(−𝜌𝜏𝑖𝑗1)

⎞⎠+ 𝜉𝑅𝑖, (38)

We estimate the parameters {𝛾, 𝛿} and {𝜐, 𝜌} using non-linear least squares.

One potential concern with this approach is that spatially-weighted employment and resi-

dential densities may be correlated with unobserved location endowments. This implies that the

most attractive locations could have higher densities for reasons not related to agglomeration

economies, potentially leading to overestimation of 𝛾 and 𝜐. To address this, we employ (again)

population density data from 1900. This method, pioneered by Ciccone and Hall (1996) and

widely applied in subsequent research (see Combes et al., 2010b), assumes that unobserved

endowments are uncorrelated over such a long period. For instance, production in 1900 often

required proximity to coal mines to minimize transport costs of inputs, but today, all such mines

have been closed. We also incorporate travel-to-work-area fixed effects, which further bolster

the exclusion restriction, as the correlation between unobserved location endowments over a

period of more than 100 years within travel-to-work areas is likely negligible.27 For readers still

concerned that the exclusion restriction might not perfectly hold, we highlight that we will

present sensitivity analyses showing that our counterfactual results remain robust even when

assuming considerably different parameters for the agglomeration and amenity elasticities.28

27Travel-to-work-areas as defined by Statistic Netherlands are equal to European NUTS3 regions.
28These results are available upon request.
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Table 7 – Productivity and amenity elasticities

Dependent variable: Productivities, log𝐴𝑗 Amenities, log 𝐵̂𝑖

Car travel time Car travel time Bicycle travel time

(1) (2) (3) (4) (5) (6)
NLS NLS-CF NLS NLS-CF NLS NLS-CF

Agglomeration elasticity, 𝛾 0.027*** 0.023***
(0.001) (0.001)

Agglomeration decay, 𝛿 -0.009*** 0.078***
(0.001) (0.001)

Amenity elasticity, 𝜐 0.037*** 0.045*** 0.078*** 0.045***
(0.004) (0.006) (0.003) (0.006)

Amenity decay, 𝜌 0.007** 0.095*** 0.378*** 0.035***
(0.002) (0.010) (0.024) (0.003)

TTWA fixed effects ✓ ✓ ✓ ✓ ✓ ✓
First stage error ✓ ✓ ✓

Number of observations 11,901 11,901 12,348 12,348 12,348 12,348
Pseudo 𝑅2 0.82 0.15 0.31
First stage F -statistic 5,672 296 358
Notes: NLS refers to non-linear least squares. CF stands for control-function approach. TTWA stands for a
travel-to-work-area. Column (1) estimates equation (37) by regressing local productivities on the spatially
weighted employment density around 𝑗. In column (2), we instrument for the spatially weighted employment
density using population density in 1900. Column (3) estimates equation (38) by regressing local residential
amenities on the spatially weighted residential density around 𝑖. In column (4), we instrument for the spatially
weighted residential density using population density in 1900. In column (5) and (6), we repeat the estimation
as in column (4) and (5) assuming that amenity spillovers are governed by cycling travel times, as compared to
car travel times. Bootstrapped standard errors (100 replications) clustered at the 𝑖 and 𝑗 level in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.

Results. Table 7 presents the results from the estimation of equations (37) and (38). Columns

(1) and (2) focus on the productivity estimation, while columns (3)-(6) address the amenity

estimation.

In column (1), we estimate an agglomeration elasticity of 0.027, which aligns well with the

range suggested by the literature (Melo et al., 2009). We observe a very small, and even wrongly-

signed, decay in agglomeration economies. However, when we turn to the instrumented estimates

in column (2), we find a substantial decay parameter of 𝛿 = 0.078. This specification implies that

the benefits of agglomeration decrease by about half after 10 minutes of driving. The estimated

decay is somewhat less pronounced than in Ahlfeldt et al. (2015), who focused on a single city,

but it is of a similar order of magnitude to Koster (2024), who also examined an entire country.

The agglomeration elasticity (𝛾 = 0.023) remains largely unaffected by instrumenting for density.

In column (3), we estimate the amenity elasticity and its decay. The amenity elasticity

is slightly larger now. Although the decay in amenities is statistically significant, it appears

surprisingly flat, with most of the amenity effect remaining after only 20 minutes of travel.

When we instrument the current residential density using the population density from 1900,

the elasticity increases slightly to 𝜐 = 0.045 (see column (4)), indicating that the elasticity is
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twice as large as for agglomeration. The decay in residential amenities increases substantially,

𝜌 = 0.095, with instrumentation strongly suggesting that amenities decay more strongly than

productivity (see Ahlfeldt et al., 2015; Koster, 2024).

As a sensitivity analysis, in columns (5) and (6), we repeat the estimation allowing amenities

to diffuse by bicycle travel times instead of car travel times. In the preferred specification in

column (6), we find an amenity elasticity identical to that in the corresponding specification in

column (4). Unsurprisingly, since cycling speeds are much lower than car speeds (14km/h versus

45km/h, see Table 1), the estimated amenity decay is less pronounced.

In the counterfactual analyses, we will use the estimate from columns (4) given that that

the majority of recreational and shopping trips (51%) within the Netherlands are done by car

(based on the OViN Survey).

5 Counterfactual analysis

5.1 Scenarios

In this section, we examine the impacts of cycling and cycling infrastructure on the urban spatial

structure and welfare. Our analysis is structured around three distinct counterfactual scenarios.

We refer to Appendix C for a detailed solution algorithm.

First, we simulate the No cycling scenario to assess how the spatial distribution of economic

activity shifts when bicycling is not an option. This scenario represents a situation where workers

are unable to choose cycling as a commuting option.29 The road capacity previously allocated

to bicycle lanes will now be reassigned to cars in the 40% most densely populated areas, where

cycling and road infrastructure compete for scarce land. This No cycling scenario represents

the most extreme case in our model and serves as a benchmark to highlight the significance of

cycling.

Second, we focus on the provision of high-quality cycling infrastructure, specifically examining

how the removal of separate cycleways and the subsequent expansion of car lanes in urban areas

impacts the spatial economic structure. This is a relevant exercise because 70% of major roads

have separate cycleways. Of those 70%, the majority (51%) cannot be used for cycling anymore

implying that cyclists have to take a detour. Meanwhile, individuals have the same preference

for cycling as in the baseline. We refer to this as the No separate cycleways scenario. Again,

cycleways are substituted by road lanes in densely populated areas, analogously to the No cycling
29Technically, we modify the bicycle preference parameter so that 𝑏2 → −∞, making bicycle commuting

extremely undesirable. In addition, the mode shares in the corresponding baseline scenario are recalibrated to the
observed mode shares reported in Table 1, by adjusting the mode choice preference shifters 𝑏1, .., 𝑏4. The change
in the shifters is only slight. We will do a similar shifter adjustment in the baseline of other scenarios.
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scenario. Consequently, the provision of separate cycleways affects the equilibrium through two

channels: (i) an increased commuting time for cyclists, (ii) an increase in road lane capacity

which affects car density and hence, congested commuting time.30

Third, the Cycling speed increase scenario analyses a hypothetical future situation in which

bicycle commuting becomes faster due to the increased adaptation of electric bicycles and the

provision of cycling highways. We assume that cycling becomes 10% faster (at negligible costs).

5.2 Aggregate effects

Main results. Table 8 outlines the the main results for the aggregate effects of the three

counterfactual scenarios. The No cycling scenario (column 1, NC) is the most extreme, resulting

in a non-negligible reduction in expected utility.31 The shares for the alternative modes to

bicycling increase strongly. Bicycle commuters predominantly shift to car commuting, which

observes an increase of about 20 percentage points, with smaller shifts to walking – 3.1 percentage

points – and public transport – 1.5 percentage points.32

These changes in travel behaviour go together with an increase in residential urban sprawl

as indicated by a 1.8% decline of the Gini coefficient of spatial residential population. The

deconcentration of workplace employment is less pronounced, as the Gini coefficient of spatial

employment reduces by only −0.6%.33 In line with that, the mean commuting distance rises

substantially, by about 30%. The surge in car use induces households to move further from their

workplaces, as predicted by the monocentric city model (Gin and Sonstelie, 1992; Glaeser et al.,

2008). Consistent with car usage increases, average car speed drops by 2.2%. On average com-

muting time increases by about 14%, which is not negligible, but much less than the percentage

increase in commuting distance.

The No separate cycleways scenario (column (2)), where separate cycleways are removed

and cyclists must either share the road with cars or take detours, exhibits trends similar to

the No cycling scenario. Although the effects are smaller, there is still a notable 1.2% decline
30The counterfactual scenario implies that we remove separate cycleways from the OSM network. For some

roads, this means that bicycles can still use the road but share the road with cars, whereas other roads cannot
be used anymore by cyclists. Therefore, we recalculate counterfactual bicycle commuting times between each
neighbourhood pair. Furthermore, we calculate counterfactual road lane km for all neighbourhoods that increase
within urban areas as a consequence of removing separate cycleways. This will endogenously affect the car density
per neighbourhood and ultimately the commuting time by car. For more technical details on the implementation
of that counterfactual scenario see Appendix D.1.

31The model suggests a reduction of 5.7%, which translates to an annual welfare loss of €18.5 billion, based
on the 2016 median household income of €39,100.

32We keep public transport supply constant in this counterfactual, which may not be realistic. If the increase
in demand leads to congestion in public transport (e.g., limited seat availability or longer turnaround times at
stops), it could result in further shifts toward car commuting and away from public transport, making our current
estimates conservative.

33For reference, the baseline Gini of spatial employment is 0.745, the Gini coefficient spatial of residential
population is 0.622, so substantially lower, consistent with that employment is more spatially concentrated.
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Table 8 – Aggregate results of Counterfactual scenarios

Baseline Identical time costs No congestion
estimation 𝜅𝑚 = 𝜅 𝜆1 = 𝜆2 = 0

Scenario: NC NW HS NC NW HS NC NW HS

Δ Expected utility (in %) -5.7 -1.2 0.8 -4.4 -1.5 0.9 -7.6 -1.8 1.0
Δ Spatial employment Gini (in %) -0.6 -0.1 0.1 0.0 0.1 0.0 -0.7 -0.2 0.1
Δ Spatial residence Gini (in %) -1.8 -0.5 0.2 -0.7 -0.1 0.0 -2.4 -0.4 0.3
Δ Total land rents (in %) 0.9 -0.2 0.0 -0.5 -0.3 0.1 -1.7 -0.1 -0.2
Δ Total output (in %) 1.4 -0.1 0.1 -0.1 -0.3 0.1 -0.2 -0.1 0.1
Δ Mean car speed (in %) -2.2 0.2 0.4 -1.6 0.0 0.3 0.8 0.3 0.0
Δ Mean commuting time (in %) 14.0 1.2 0.0 8.2 1.3 -0.2 22.1 3.0 0.0
Δ Mean commuting distance (in %) 30.3 7.1 0.5 21.2 6.6 0.1 59.1 9.7 0.0
Δ Car share (in %-points) 20.4 4.5 -2.3 13.3 4.3 -2.0 20.9 3.6 -1.9
Δ Bicycle share (in %-points) -25.0 -5.2 2.7 -25.0 -6.7 3.1 -25.0 -4.4 2.3
Δ Walk share (in %-points) 3.1 0.4 -0.2 6.8 1.0 -0.4 2.1 0.5 -0.2
Δ Public transport share (in %-points) 1.5 0.3 -0.2 4.9 1.4 -0.7 2.0 0.4 -0.2

Notes: NC = No cycling; NW = No separate cycleways; HS = Cycling speed increase. Identical time costs
refers to a case where the commuting time cost parameter is not mode-specific but where we have identical
time costs across modes (i.e., a single 𝜅 , see Table 3, column 3). Mode shares in the baseline scenario of
each panel are recalibrated and standardised to the observed mode shares reported in Table 1. In the No
congestion sensitivity analysis, we use free-flow travel times instead of congested travel times and put the
congestion parameters {𝜆1, 𝜆2} to zero.

in expected utility, which is equivalent to an annual welfare loss of approximately €3.5 billion.

This can be considered a conservative estimate of the impact of not providing adequate cycling

infrastructure, as we ignore the reduction in safety when cyclists have to share the road with cars.

Given the substantial benefits of dedicated cycleways, it is clear that the advantages far outweigh

the costs of building such infrastructure, because the costs of providing separate cycleways is

below the costs of building roads.34

We now observe rather moderate increases in car use – by 4.5 percentage points. Interestingly,

car speeds slightly increase. The latter would not be possible in a transport model where

commuting distances are given, but is consistent with that the removal of separate cycleways

induces households to relocate away from city centres to the suburbs, where car speeds are

typically higher. In line with this, commute distances increase moderately by about 7%.

In the final scenario, we explore a 10% increase in cycling speeds, e.g. due to the adoption

of electric bicycles, leading to a non-negligible 0.8% rise in expected utility. The higher cycling

speeds result in an increase of 2.8 percentage points in the share of commuters using bicycles,

indicating that higher speeds nontrivially enhance the appeal of cycling. Nevertheless, car speed

remains rather constant and although cities become slightly more compact, in essence the spatial
34For instance, the average costs of the car infrastructure is projected to be 47 euros per 1,000 passenger km,

while for cycling this number is only 22 (Schroten et al., 2022).
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structure hardly changes.

Sensitivity analysis: identical time costs. In contrast to the transport economics literature, it is

common in the quantitative spatial model literature to assume that 𝜅 is the same for all travel

modes, implying that the marginal time costs are the same for all travel modes (Tsivanidis, 2023).

To assess whether allowing for mode-specific commuting costs is important, we re-estimate our

counterfactuals based on estimates reported in column (3) of Table 3, which impose that the

marginal time costs are the same for all travel modes, i.e. 𝜅𝑚 = 𝜅.

Table 8 reveals important differences across all three scenarios. While commuting distances

(and times) still increase under the assumption that marginal time costs are the same across all

modes, the increase is now much smaller. Consequently, changes in the urban spatial structure

are also more moderate when marginal time costs are assumed to be identical, as reflected by

smaller changes in the reported Gini coefficients. These findings are consistent with that in

the No cycling and No separate cycleways scenarios, the shift to car use is systematically less

when imposing the identical time cost restriction. For instance, in the No cycling scenario, the

car share increases by just 13 percentage points, as opposed to 20 percentage points we have

reported above. These findings suggest that when data availability allows, future research in

welfare effects from infrastructure investments should consider mode-specific time costs in the

analysis.

Sensitivity analysis: no congestion. In the last three columns of Table 8 we have investigated

the role of car congestion. We recalibrated the model under the assumption that all roads are

uncongested. By so doing we assume car speeds to be equal to their free-flow levels. Although

the external costs of car congestion in Dutch cities tend to be low compared to other countries,

disregarding car congestion still has notable effects, and exactly in the direction predicted by the

monocentric city model if cyclists predominantly move to car use (see our discussion of Figure 2):

changes in spatial structure become more pronounced when cycling is reduced, and commuting

distances (and times) increase more significantly. This may appear counterintuitive, but it is

important to recognise that reducing congestion reduces the marginal costs of car travel. As a

result, more people will switch to driving and drive longer distances.35

35We also observe a much larger drop in expected utility in the No cycling scenario. While this makes sense, it
is somewhat artificial, as in a world without congestion costs, the preference for cycling would need to be much
stronger to explain the current level of cycling. As a result, removing cycling would lead to a more significant
welfare loss.
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5.3 Local spatial differences

Here we consider the local spatial differences in the effects for the three scenarios. Let us start

with the No cycling scenario for which we show the changes in residential density in Figure 5a.

In line with the reduction in the Gini coefficient observed earlier, residential densities decrease

significantly in inner cities, especially around the 6 largest cities, which are labelled in our figures.

Densities in inner-city areas drop by about 14%. These findings suggest that the modal shift

towards cars, driven by the reduction in cycling, leads to increased urban sprawl and lower

average population densities, which aligns well with reduced-form empirical evidence (Glaeser

and Kahn, 2004; Ostermeijer et al., 2022). Workplace densities also decline, although to a lesser

extent than residential densities. Consistent with this, floor space prices fall in inner cities due

to reduced demand, while prices increase in suburban and peripheral areas (see Appendix D.2).

(a) Residential density Δ% (b) Residential floor space
consumption Δ%

Notes: This figure illustrates the local spatial differences of the No cycling scenario with respect to the model
baseline. The left figure (a) shows changes in residential density (in percent), while the right figure (b) shows
changes of residential floor space consumption (in percent). Percentages displayed are held between the 5th and
95th percentiles. Both figures display the names and locations of the six largest cities in the Netherlands.

Figure 5 – Local spatial differences in the No cycling scenario

Figure 5b highlights the changes in residential floor space consumption per person in different

areas. As floor space prices drop in inner cities, consumption in these areas increases by at least

10%. In contrast, in suburban and peripheral regions, higher floor space prices lead to a reduction

in floor space consumption.

We find that the wage differences in the workplace in the counterfactual scenarios are minimal.

In the No cycling scenario, the average wage change is only −0.48% nationwide and 0.23% for

the 6 largest cities. This result aligns with the relatively limited spatial variation in wage levels
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in the Netherlands (see Groot et al., 2014).

(a) Residential density Δ% (b) Residential density Δ%

Notes: This figure illustrates the local spatial differences arising from analysing the No cycleways scenario (left
figure, (a)) and the Cycling speed increase scenario (right figure, (b)). Both figures show changes in residential
density (in percent). Percentages displayed are held between the 5th and 95th percentile. Both figures display
the names and locations of the six largest cities in the Netherlands.

Figure 6 – Local spatial differences in the No cycleways (a) and Cycling
speed increase (b) scenarios

In Figure 6a, we analyse the effect on residential density under the No separate cycleways

scenario. We find that replacing dedicated cycleways with road lanes within cities leads to

suburbanisation, although to a lesser extent than in the No cycling scenario. Without separate

cycleways, suburban growth reaches up to 5%, compared to 20% in the No cycling scenario.

As detailed in Appendix D.2, the density of the workplace and the prices of floor space exhibit

qualitative changes similar to those observed in the No cycling scenario, but with a smaller

overall impact.

By contrast, making cycling more attractive by increasing speeds has a positive impact on

inner-city density. As depicted in Figure 6b, a 10% rise in cycling speeds leads to an increase

in inner-city densities of up to 2%. Workplace densities follow a similar trend but the impacts

are smaller. Floor space prices also see a modest rise in cities, although only by about 0.5%

(see again Appendix D.2). Interestingly, in certain rural areas in the north of the Netherlands,

prices also experience a slight increase, likely due to the limited availability of public transport,

making improvements in cycling speed particularly beneficial.
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6 Conclusion

This paper explores the impact of cycling and cycling infrastructure on urban spatial structure

and overall welfare. Our key methodological contribution lies in incorporating mode choice

and including cycling into a spatial general equilibrium model. This approach advances recent

work in the field (see, e.g., Severen, 2023; Tsivanidis, 2023; Koster, 2024). In our model, the

choice to cycle versus other commuting options (such as driving) interacts with residential and

workplace location decisions, traffic congestion, and the resulting commuting times and distances.

Importantly, we allow for mode-specific commuting time costs and correlation between various

transport modes. This setup then allows us to carefully examine the trade-offs between cycling

and car commuting, which are especially relevant in densely populated areas. Additionally, our

use of fine-grained spatial data is a significant contribution, as cycling plays a crucial role in

short-distance commutes, particularly those up to 5 km.

We estimate the model for the Netherlands, where cycling for commuting is very popular

with cycling commuting shares of about 25%. However, the share of cycling is about 55% for

shorter trips within cities, highlighting that mode choice highly depends on spatial differences

in residential (and employment) densities. Using the structure of the model and the estimated

model parameters, we conduct a series of counterfactual experiments in order to evaluate how

changes in bicycle commuting and infrastructure impact the urban spatial structure, as captured

by residential density, commuting distances, times, and mode shares.

We demonstrate that eliminating cycling leads to a 20 percentage-point increase in car use,

which subsequently causes a 30% rise in commuting distance, a 14% increase in commuting

time, and a 2% decline in car speed due to increased traffic congestion. As a result, the lower

per-kilometre costs of driving, compared to cycling, contribute to greater urban sprawl. Overall,

eliminating bicycle commuting reduces worker welfare by about 6%. These findings confirm

that cycling not only improves welfare but also helps maintain more compact cities. Further,

removing separate bicycle lanes moderately increases car use and induces moderate increases

in urban sprawl – commuting distances increase by 6% – but still sizable reductions in welfare

(about 1.2%). The increase in cycling speed, anticipated due to the increased adoption of electric

bicycles, increases the use of bicycles, but has a limited impact on the spatial structure of the

economy.

Our results are consistent with the monocentric city model, which predicts that individuals

using modes with higher marginal costs prefer to live closer to the city center (Gin and Sonstelie,

1992; Glaeser, 2008). This implies that eliminating cycling increases urban sprawl. In line with

these predictions, we also find that lower levels of car congestion amplify the reported effects on

38



spatial structure.

These findings highlight the critical role of maintaining and enhancing cycling infrastruc-

ture in shaping future urban development, alleviating congestion, and boosting overall welfare.

The results offer compelling evidence for policymakers to prioritise cycling infrastructure as

a cornerstone of sustainable urban transport planning. However, it is important to note that

our counterfactual scenarios were carried out in a country with a strong cultural preference for

cycling. As such, the external validity of our results is likely limited to countries with similar

historic cycling preferences but currently less developed cycling infrastructure, such as Germany,

England, Belgium, France, China and Japan. At the same time, our model could also be useful

for other countries, as long as the mode-specific preference parameters are adjusted so that they

reflect the prevailing mode shares.
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A Data sources and definitions

A.1 Neighbourhoods

Our main data source is the universe of non-public Dutch 2016 microdata compiled by Statistics

Netherlands. All data is based on administrative sources unless indicated otherwise. Our unit

of analysis is the neighbourhood (or the ‘buurt’ in Dutch) as defined by Statistics Netherlands.

In 2016, we have information on 12,782 neighbourhoods, containing on average only about 600

households. We exclude a small number of neighborhoods located on the Wadden Islands due

to the lack of available data on ferry travel times. Table A1 gives an overview of all relevant

neighbourhood statistics, for which we explain the source in more detail below.

Productivity and

A.2 Population

Wages. For all Dutch workers, we obtain data on monthly income, hours worked and their em-

ployer in our base year 2016 from the income registry data SPOLIS (Salaris Polis Administratie),

which we rework to the equivalent hourly wages. We discard workers that receive unemployment

and disability benefits, state pensions, firm owners and temporary and payroll workers and the

self-employed, since they either do not have a fixed work location or their travel behaviour is

likely to be governed by factors outside our model. We also drop workers that work less than 8

hours per week since they are unlikely to commute to work multiple times per week on a regular

basis. This way, we end up with a total number of observations of 𝑁 ≈ 5, 000, 000.

Table A1 – Summary statistics at the neighbourhood level

Mean Std. Dev. 10th 50th 90th

Residence population 398 546 10 192 1045

Working population 398 975 4 106 977

Population in 1900 400 1093 0 124 898

Median wage per hour (in euro) 19 4 13 19 24

Floor price per m2 (in euro) 1276 440 842 1197 1772

neighbourhood area (in km2) 2.6 5.3 0.2 0.7 7.4

Road length (in km) 2.1 5.3 0 0.3 5.5

Notes: The data are sourced from the respective datasets mentioned in subsec-
tion A. Road length corresponds to the road capacity used for calculating traffic
density in our model (see equation (17)). It refers to the number of lane km per
neighbourhood for all primary and secondary roads. Road lane km of tertiary and
residential roads are not included.

A1



Residences. To obtain the neighbourhood of residence of each person living in the Netherlands,

we match records from the municipal population register (GBA) to the register of all Dutch

addresses (GBAADRESOBJECTBUS) on 6-digit zip code level where each zip code represents about

30 houses. Subsequently, we map the zip codes to the set of 12,782 neighbourhoods, which we

consider in our analysis. We perform this procedure for the model base year 2016. The procedure

covers the complete Dutch population. Finally, we merge the residences data to the wages dataset

to pair individual workers and their residences to their respective employers.

Workplaces. On the workplace side, we extract all firms and all of their branch locations from

the national firm register (ABR) and match them with the neighbourhoods they are located in.

Since the wages data only contains the employer, but not the specific branch where a given

employee works, we set the workplace to the location closest the worker residence if a firm has

multiple branches, as in Gaigné et al. (2022). We now have constructed a dataset of about 5

million individual Dutch workers coupled to their residence and work neighbourhoods.

Historic population. We use historic population data from 1900 as an instrumental variable

to estimate the congestion elasticity and parameters on agglomeration economies pertaining

to productivity and amenities. This population data comes from NLGIS for municipalities in

1900, which were smaller and comparable to the size of a large neighbourhood today. The local

population distribution is imputed by mapping buildings and assuming a uniform population

per building within each municipality based on detailed data on land use provided by Knol et al.

(2004).1

Floor prices. We estimate floor prices conditional on housing characteristics from the universe

of housing transaction data by the Dutch Association of Real Estate Brokers (NVM). We run a

hedonic regression similar to Teulings et al. (2018) and Gaigné et al. (2022), where we regress

log price per square meter on dwelling characteristics, neighbourhood, year and building-year

dummies. The NVM data (years 2012 - 2021, 𝑁 = 1, 324, 690), covering the large majority of

owner-occupied housing transactions, include transaction prices, lot sizes, interior floor space

size (m2), addresses and housing attributes such as house type, number of rooms, construction

year, garden, state of maintenance, central heating, and listed building status.
1For the 1900 land use maps, Knol et al. (2004) scanned and digitised historic maps into 50 × 50 metre grids,

classifying them into 10 categories, such as built areas, water, sand, and forest. We aggregate these categories
into three broad groups: built-up areas, open space, and water bodies.
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A.3 Mode choice (OViN survey)

We use the 2016-2022 OViN survey for information on mode choice per neighbourhood combina-

tion. Within the OViN survey we consider only work commuting trips, i.e., recreational trips or

shopping trips are excluded. When trips are recorded as multi-modal trips, then we assign the

trip to the mode that was used for the majority of the km traveled. Public transport covers trips

made by train, bus, tram, metro and ferry. Trips by motorcycle or moped are discarded from

the data. The number of person-commuting day observations in total is 𝑁 = 48, 323. The data

contains trip origin (residence) and destination (workplace) neighbourhood, the modes used, the

number of transfers, the date of surveyed respondents, sex, age, level of education and income,

and self-reported travel distance and time.

A.4 Travel times

Travel times by road. We calculate travel times between neighbourhood pairs for different

travel modes. Travel times are determined along the road, cycling, and pedestrian networks

using the Open Street Map (OSM) database combined with assumptions on average travel speeds

per mode and road type. We include all Dutch roads in the routing procedure, not just the roads

for through traffic. The OSM database differentiates between road types in road infrastructure

(motorways, trunks, primary, secondary, tertiary roads and residential roads) as well as the type

of cycling infrastructure (on-road cycling lanes and separate cycleways).

Average speeds per mode and road type are set within the dodgr many-to-many routing

algorithm. For example, the average speed of foot travel (on any walkable road) is assumed to be

5km/h. The speed of travel by bicycle (on any road) is on average 15km/h. Average car speeds

depend on road type. On residential roads the average free-flow speed is 48km/h, on tertiary

roads 60km/h, on secondary and primary roads 80km/h and motorways 112km/h. To route

from (or to) a neighbourhood, we determine for each neighbourhood the intersection closest to

its centroid, and then route from there.

In all three modes of travel on the road, the routing procedure yields free flow travel times

in minutes for 12,7822 × 3 = 490,138,572 origin-destination pairs. To reduce the data burden of

our effort, we impute the travel time for long trips using the (calculated) mode-specific median

travel speed along a straight line. We do this for trips for which it is unlikely that they will

experience nonzero commuter flows. For car commuting, we do the imputation for trips longer

than two hours, and for cycling and walking we use a one-hour threshold.
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Congested car travel times. To perform our estimation of the congestion parameters in section

4.3, we require knowledge of the traffic delays of cars on both motorways and urban roads. To

gauge these delays, we sample 1,000 neighbourhood pairs that are less than 100km apart and

request congested driving times at 08:00 am (peak hour) on a regular weekday. We explain how

we then predict congested travel times for all location pairs.

Travel times by public transport. We source information on public transport routes, schedules,

and geographic public transport details from General Transit Feed Specification (GTFS) Schedule.2

GTFS is a standardised open source data format that provides all the necessary ingredients to

calculate the travel times of public transport between all combinations of neighbourhoods in

our data.

The data for the Dutch public transport network can be accessed via a GTFS respository

and API requests.3 Using the GTFS timetables, we first determine the fastest routes between all

Dutch public transport stops. Routes can include transfers and switching modes, when necessary.

Then, we determine the fastest public transport routes between all pairs of neighbourhoods,

where a commuter could in principle use any stop within a radius of 3 km. We assume that

commuters travel at an average speed of 7.5 km/h along the road network when moving from a

neighbourhood centroid to their intended public transport stop.4

A.5 Imputation methodology

There are two data sources for which we observe only a subset of neighbourhood combinations.

These are mode shares (from OViN) and congested car travel times (from Google). We need

mode shares for the entire neighbourhood domain to estimate congestion parameters {𝜆1, 𝜆2}.

We also need congested travel times for estimation of almost all relevant model parameters,

{𝜈, 𝜅1, 𝜅, 𝜆1, 𝜆2 𝛿, 𝜌}. Hereafter, we explain our imputation methodology. The procedure is virtu-

ally identical for the imputation of mode shares and congested travel times. The former uses the

2016-2022 OViN mode shares as the training sample, while the latter uses congested travel times

between 1000 neighbourhood combinations requested through the Google API as the training

sample.

Mode shares Based on the OViN sample, we train a random forest model (see the R package

RandomForest) on observed individuals in the survey using a 50% sample of the available
2General information on the data format can be found at https://gtfs.org/.
3From the repository website https://gtfs.ovapi.nl/nl/ we use the data of 2021, which is the earliest available

year, closest to our base year 2016.
4An average speed of 7.5 km/h along the road network is in between common walking and cycling speeds.

Dutch commuters often bicycle to train stations but commonly walk to bus and tram stops.
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municipalities of residence. Next to mode-specific travel time, we add the following determinants

of mode choice 𝑋𝑖𝑗 for both the residence and the work neighbourhood: travel time (per mode),

distance from the nearest motorway ramp, distance to the nearest public transport stop, density

and neighbourhood population. Finally, we add Euclidean distance between residence and work

location (𝑑𝑖𝑠𝑡𝑖𝑗). The choice of determinants is motivated by the fact that we observe them for

all neighbourhood pairs, which guarantees that we can use the model to impute all necessary

mode shares. Since the public transport and walking modes have much less observations than the

cycling and car ones, we give the former higher weights in the training procedure. We estimate:

Pr(mode = 𝑘|𝑖𝑗) = 𝑓 (𝜏𝑖𝑗𝑚, 𝑋𝑖𝑗 , 𝑑𝑖𝑠𝑡𝑖𝑗) (A1)

We evaluate if the model is able to accurately predict the mode shares from any given munic-

ipality of residence to all associated work locations. To achieve this, we predict mode shares

per residence-workplace-mode 𝑖𝑗𝑚 on neighbourhood level. Then, we aggregate by residence

population to construct mode shares per residence-mode on municipality level. The correlation

between predicted and actual modes shares equal 0.97.

Congested car travel times Based on the Google sample, we train a random forest model (see

theR package RandomForest) on observed neighbourhood combinations. As for the mode shares,

we add determinants 𝑋 for both residence and work neighbourhood, which include car free-flow

travel times, distance to nearest motorway ramp, distance to nearest public transport stop,

density and neighbourhood population. Furthermore, we add the Euclidean distance between

residence and work location (𝑑𝑖𝑠𝑡𝑖𝑗). All of these variables are observed for every neighbourhood

combination, making them ideal inputs for the random forest model. Eventually, the model is

used to generate predictions of congested travel times for all missing neighbourhood combinations,

which can be formalised as follows:

̂︂𝜏𝑖𝑗1 = 𝑓 (𝜏𝑖𝑗𝑚, 𝑋, 𝑑𝑖𝑠𝑡𝑖𝑗) (A2)

The correlation between predicted and actual congestion delays equal 0.99.
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B Structural estimation: Additional information and results

B.1 Calibrating aggregate mode shares

As substitution between modes plays a central role in our research question, we aim to match

the aggregate mode shares implied by the model with the ones we observe in the OViN survey

from the years 2016-2022 (compare Table 1, Panel A). Given the observed commuting flows 𝑁𝑖𝑗 ,

our Nested Logit mode choice is capable of reproducing the observed aggregate mode shares

with precision.1

Although their distributions are similar, the commuting flows between location pairs implied

by the model baseline differ from observed ones. The main reason for this is that the ASRW

model cannot account for factors that lead to variability in mode choice between location pairs 𝑖𝑗,

apart from the generalised commuting time 𝑡𝑖𝑗 . Apart from 𝑡𝑖𝑗 , the probabilities of commuting

depend on the attractiveness of the workplaces (transformed wages 𝜔𝑗) and the residences

(transformed amenities 𝑎𝑖), but not on their combinations.

To match observed aggregate mode shares, we recalibrate the alternative specific preference

shifters 𝑏𝑚 using a procedure outlined by Train (2009). First, we simulate the baseline configu-

ration of the model for a single iteration and calculate the model implied mode shares 𝑆𝑚.2 We

then update 𝑏𝑚 in the following way, iterating until the sum of squared errors between 𝑏1
𝑚 and

𝑏0
𝑚 is sufficiently small:

𝑏1
𝑚 = 𝑏0

𝑚 + log 𝑆𝑚
𝑆0
𝑚

(B1)

Finally, we used the final recalibrated values 𝑏𝑚 to run the baseline model until convergence.

This ensures that the model matches, in the aggregate, the observed mode choices of the universe

of Dutch workers.

B.2 Mode choice estimation

This subsection briefly discusses the instrumentation choice and first-stage results from estimat-

ing (29). Table B1 is separated into two panels. While Panel A refers to the first-stage results,

Panel B repeats the second-stage results as presented in the main paper for comparison. In the

single 𝜅 case (column 3) and the mode-specific 𝜅𝑚 case (column 6), we run the same first stage

estimation and instrument mode-specific commuting time 𝜏𝑖𝑗𝑚 with Euclidean distance and its

squared counterpart as is standard in the economic literature. As expected, both instruments are
1This is a property of Nested Logit estimation, see Train (2009), page 37 for a discussion on this matter.
2Relying on a single iteration saves computing time and does not yield materially different recalibration results

compared to letting the model run until convergence in this step.
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highly relevant, with a larger parameter magnitude for short-distance commuting modes (i.e.,

walk). This is because the error of margin between Euclidean distance and calculated network

travel times is smaller for shorter trips.

B.3 Congestion elasticity estimation

This subsection discusses briefly the instrumentation choice and first-stage results from estimat-

ing (29).

Recall that the congestion estimation uses information on car commuters to each workplace

location. As the 2016-2022 OViN survey data is a representative sample of the entire Dutch

population, we cannot directly infer the share of car commuting to each location of work from

the data. Therefore, we obtain the share of car commuters by imputation as explained in

Appendix A.5.

Table B2 shows the results from estimating (32). While Panel A refers to the first stage

results, Panel B repeats the second stage results as presented in the main paper for comparison

(compare (33) for a separation of the two stages). We employ a classical strategy used in the

literature on agglomeration economies and use an historic instrument to address endogeneity

concerns with car density. Decisions regarding workplace locations are likely influenced by the

placement of infrastructure. However, we expect that for location decisions around 1900 this

is not the case, as they are likely not correlated to current infrastructure supply, for example,

because highways and roads suitable for cars did not exist around that time and commuting to

work over longer distances was still uncommon.

Column (2) of Panel A regresses car density on the spatially weighted historic population

density of 1900. Column (4) regresses car density on spatially weighted historic population density

of 1900 and its squared counterpart. In both cases the instruments are highly relevant, with an

𝐹 -statistic above 15,000. Controlling for the squared term in column (4), reveals a concavity

in the data, as the parameter on the squared spatially weighted historic population density

becomes negative. This implies that car density (and therefore congestion) is not necessarily the

highest where historic city centres used to be.

B.4 Productivity and amenity estimation

This subsection discusses the instrumentation choice and first-stage results from estimating

productivity and amenity parameters.

Table B3 shows the results from estimating (37) and (38). While Panel A refers to the

first-stage results, Panel B repeats the second-stage results as presented in the main paper
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Table B1 – Mode choice parameter estimation
(incl. First Stage results)

Panel A: First Stage
Dependent variable: Mode-specific travel time

Single 𝜅𝑚 = 𝜅 Mode-specific 𝜅𝑚

(1) (2) (3) (4) (5) (6)
Euclidean distance × Car 0.001*** 0.001***

(0.000) (0.000)
Euclidean distance × Bicycle 0.005*** 0.005***

(0.000) (0.000)
Euclidean distance × Walk 0.016*** 0.016***

(0.000) (0.000)
Euclidean distance × PT 0.003*** 0.003***

(0.000) (0.000)
(Euclidean distance)2 × Car 0.000*** 0.000***

(0.000) (0.000)
(Euclidean distance)2 × Bicycle 0.000*** 0.000***

(0.000) (0.000)
(Euclidean distance)2 × Walk 0.000*** 0.000***

(0.000) (0.000)
(Euclidean distance)2 × PT 0.000*** 0.000***

(0.000) (0.000)
Number of observations 130,240 130,240
First stage F -statistic 4,940 4,940
Panel B: Second Stage

Dependent variable: Mode choice

NL NL NL-CF NL NL NL-CF
Commuting time elasticity, 𝜅 -0.077*** -0.077*** -0.080***

(0.001) (0.001) (0.001)
Car commuting time elasticity, 𝜅1 -0.097*** -0.094*** -0.070***

(0.002) (0.002) (0.004)
Bicycle commuting time elasticity,
𝜅2

-0.093*** -0.093*** -0.089***

(0.001) (0.001) (0.001)
Walk commuting time elasticity, 𝜅3 -0.128*** -0.128*** -0.148***

(0.005) (0.005) (0.006)
PT commuting time elasticity, 𝜅4 -0.065*** -0.063*** -0.039***

(0.002) (0.002) (0.003)
Non-car nest parameter, 𝜓2 0.590*** 0.603*** 0.531*** 0.849*** 0.846*** 0.972***

(0.013) (0.014) (0.014) (0.021) (0.022) (0.031)
Worker characteristics ✓ ✓ ✓ ✓
First stage errors ✓ ✓

Number of observations 130,240 130,240 130,240 130,240 130,240 130,240
Pseudo-𝑅2 0.293 0.295 0.304 0.307 0.317 0.320
Notes: PT stands for public transport. Data is sourced from the OViN Survey for the years 20216-2022 and consists of
workers facing the choice set of four modes of transport (walk, bicycle, car, public transport). Worker characteristics include
age, sex, education, income and day of the week. All columns estimate Nested Logit (NL) models. Car is the reference
mode, meaning that 𝑏1 = 0. As car is the only mode within the car nest it follows that 𝜓1 = 1. Columns (1) and (2)
estimate a baseline model with a single commuting time coefficient, implying one 𝜅 for all modes. Columns (3) and (4) use
mode-specific commuting time coefficients 𝜅𝑚. In columns (2) and (4), commuting time is instrumented with Euclidean
distance for each mode using a control function approach (CF). Bootstrapped standard errors (100 replications) clustered
at the 𝑖 and 𝑗 level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table B2 – Congestion elasticity
(incl. first-stage results)

Panel A: First Stage
Dependent variable: Car density

(1) (2) (3) (4)
Spatially weighted population 0.774*** 1.089***

density in 1900 (0.014) (0.016)
(Spatially weighted population -0.192***

density in 1900)2 (0.007)
Panel B: Second Stage

Dependent variable: Recovered workplace fixed effect, log 𝑇𝑀𝑗

(1) (2) (3) (4)
OLS CF OLS CF

Car density, 𝜆1 0.013*** 0.018*** 0.013*** 0.014***
(0.000) (0.001) (0.000) (0.000)

(Car density)2, 𝜆2 0.004*** 0.004***
(0.000) (0.000)

First stage error ✓ ✓

Number of observations 12,782 12,782 12,782 12,782
First stage F -statistic 15,214 17,732
Notes: CF stands for ‘control function’. Column (1) estimates log workplace fixed
effects on car density following (32). In column (2), we instrument car density using
historic population density in 1900. Column (3) estimates log workplace fixed effects
on car density and car density squared. In column (4), we instrument car density
with historic population density in 1900 and its squared counterpart. Bootstrapped
standard errors (100 replications) clustered at the 𝑖 and 𝑗 level in parentheses. *** p
< 0.01, ** p < 0.05, * p < 0.1.

for comparison. We instrument spatially weighted employment density and spatially weighted

residential density, respectively, with spatially weighted historic population density in 1900

(see columns (2), (4) and (6)). Omitted variable bias concerns arise from the fact that the

most attractive locations in terms of productivity and amenity levels may be correlated with

unobserved location endowments. Unobserved endowments are likely uncorrelated over a very

long time period, given that the Dutch economic geography has substantially changed over

the last century. This makes historic population information arguably a suitable instrument,

particularly given that we control for travel-to-work-area fixed effects in all specifications.

The results in Table B3 show that the elasticity to employment density and residential

population density is negative, respectively. This implies that current jobs and residence locations

are on average located outside of historic city centers. The spatial decay of historic population

density is positive and larger when regressing on employment density. This indicates that the

population density in 1900 is more locally concentrated than the current job density. The results

are comparable if we assume amenities to diffuse via the car road network (column (4)) or the

cycling network (column (6)). The difference in the magnitude of the spatial decay parameter

is likely due to differences in speed between the two modes.

B4



Table B3 – Productivity and amenity elasticities
(incl. first stage results)

Panel A: First Stage
Dependent Spatially weighted Spatially weighted

variable: employment density (log) residential density (log)

Car travel time Car travel time Bicycle travel time

(1) (2) (3) (4) (5) (6)

Spatially weighted population -0.588*** -0.282*** -0.260***
density in 1900 (log), elasticity (0.001) (0.022) (0.022)

Spatially weighted population 0.092*** 0.056*** 0.018***
density in 1900 (log), decay (0.011) (0.002) (0.001)

Panel B: Second Stage
Dependent variable: Productivities, log𝐴𝑗 Amenities, log 𝐵̂𝑖

(1) (2) (3) (4) (5) (6)
NLS NLS-CF NLS NLS-CF NLS NLS-CF

Agglomeration elasticity, 𝛾 0.027*** 0.023***
(0.001) (0.001)

Agglomeration decay, 𝛿 -0.009*** 0.078***
(0.001) (0.001)

Amenity elasticity, 𝜐 0.037*** 0.045*** 0.078*** 0.045***
(0.004) (0.006) (0.003) (0.006)

Amenity decay, 𝜌 0.007** 0.095*** 0.378*** 0.035***
(0.002) (0.010) (0.024) (0.003)

TTWA fixed effects ✓ ✓ ✓ ✓ ✓ ✓
First stage error ✓ ✓ ✓

Number of observations 11,901 11,901 12,348 12,348 12,348 12,348
Pseudo-𝑅2 0.82 0.15 0.31
First stage F -statistic 5,672 296 358
Notes: NLS stands for non-linear least squares, CF stands for control function, and TTWA stands for a travel-to-work-area.
Column (1) estimates equation (37) by regressing local productivities on the spatially weighted employment density around
𝑗. In column (2), we instrument for the spatially weighted employment density using the population density in 1900. Column
(3) estimates equation (38) by regressing local residential amenities on the spatially weighted residential density around 𝑖.
In column (4), we instrument for the spatially weighted residential density using the population density in 1900. In columns
(5) and (6), we repeat the estimation as in columns (4) and (5) assuming that amenity spillovers are governed by cycling
travel times, as compared to car travel times. Bootstrapped standard errors (100 replications) clustered at the 𝑖 and 𝑗 level
in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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C Counterfactual solution algorithm

To solve for the new equilibrium in each of the counterfactual scenarios, we largely follow the

procedure described in Ahlfeldt et al. (2015) except for the computation of the mode choice

probabilities and the addition of congestion as per Koster (2024). Initially, we select the starting

values for transformed wages 𝜔0
𝑗 , amenities 𝑎0

𝑖 , floor space prices 𝑝0
𝑖 , and the total working

population 𝐻̄, corresponding to the values derived from the baseline scenario. We set travel

times 𝜏1
𝑖𝑗𝑚 for each mode to be in line with the counterfactual scenario. Subsequently, we compute

the mode-specific commuting probabilities 𝜋𝑖𝑗|𝑚 using (15):

𝜋1
𝑚|𝑘,𝑖𝑗 =

∑︁
𝑛∈M𝑘

exp
(︂
𝑏𝑛
𝜓𝑘

+ 𝜅𝑛
𝜓𝑘
𝜏1
𝑖𝑗𝑛

)︂

Now, we can update the mode nest inclusive value 𝑡1𝑘|𝑖𝑗 using (14) and the generalized travel

time 𝑡1𝑖𝑗 using (5):

𝑡1𝑘|𝑖𝑗 = log
∑︁
𝑚∈M2

exp
(︂
𝑏𝑚
𝜓𝑘

+ 𝜅𝑚
𝜓𝑘

𝜏1
𝑖𝑗𝑚

)︂

𝑡1𝑖𝑗 = log
[︃ 2∑︁
𝑘=1

exp
(︁
𝜓𝑘𝑡

1
𝑘|𝑖𝑗

)︁]︃
,

and then, the generalized commuting probabilities 𝜋1
𝑖𝑗 follow from (3) as:

𝜋1
𝑖𝑗 =

𝑎0
𝑖𝜔

0
𝑗 exp

(︁
−𝜂𝜀𝑡1𝑖𝑗

)︁
𝐼∑︁
𝑟=1

𝐼∑︁
𝑠=1

𝑎0
𝑟𝜔

0
𝑠 exp

(︁
−𝜂𝜀𝑡1𝑟𝑠

)︁ .

With the commuting probabilities we update the neighbourhood residential and workplace

populations and their populations by mode:

𝐻1
𝑅𝑖 =

𝐼∑︁
𝑠=1

𝜋1
𝑖𝑠𝐻̄

𝐻1
𝑀𝑗 =

𝐼∑︁
𝑟=1

𝜋1
𝑟𝑗𝐻̄

𝐻1
𝑅𝑖𝑚 =

𝐼∑︁
𝑠=1

𝜋1
𝑖𝑠𝑚𝐻̄

𝐻1
𝑀𝑗𝑚 =

𝐼∑︁
𝑟=1

𝜋1
𝑟𝑗𝑚𝐻̄.
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In the next step, we update agglomeration and amenity externalities using (21) and (22):

𝐴1
𝑗 = 𝐴𝑗

(︃
𝐼∑︁
𝑖=1

𝐻1
𝑀𝑖

(1 − 𝜄𝑖)𝐿𝑖
exp(−𝛿𝜏1

𝑖𝑗1)
)︃𝛾

𝐵1
𝑖 = 𝐵̄𝑖

⎛⎝ 𝐼∑︁
𝑗=1

𝐻1
𝑅𝑗

(1 − 𝜄𝑗)𝐿𝑗
exp(−𝜌𝜏1

𝑖𝑗1)

⎞⎠𝜐 .
The share of commercial floor space 𝜃0

𝑖 equals:

𝜃0
𝑖 = 𝐹 0

𝑀𝑗/𝐹
0
𝑖

Using (24) optimal capital use 𝐾0
1 becomes:

𝐾0
𝑖 =

(︁
𝜇ϒ𝑖𝑝

0
𝑖

)︁ 1
1−𝜇 𝐿0

𝑖

and floor space supply by the construction sector updates to

𝐹 1
𝑖 = ϒ𝑖𝐾

𝜇
𝑖 ((1 − 𝜄𝑖)𝐿𝑖)1−𝜇

𝐹 1
𝑅𝑖 = (1 − 𝜃0

𝑖 )𝐹 1
𝑖

𝐹 1
𝑀𝑖 = 𝜃0

𝑖 𝐹
1
𝑖 .

After updating workplace populations and floor spaces, we update production 𝑦1
𝑗 using (19):

𝑦1
𝑗 = 𝐴1

𝑗

(︁
𝜍𝐻1

𝑀𝑗

)︁𝛼 (︁
𝐹 1
𝑀𝑗

)︁1−𝛼

so that the wages 𝑤1
𝑗 become

𝑤1
𝑗 =

𝛼𝑦1
𝑗

𝜍𝐻1
𝑀𝑗

.

Then, we determine the expected wage at the residence E[𝑤̄0
𝑖 ] as

E[𝑤̄0
𝑖 ] =

𝐼∑︁
𝑠=1

𝜋𝑖𝑠|𝑖𝑤
0
𝑠

and the floor space prices 𝑝1
𝑖 as
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𝑝1
𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 − 𝛼)𝑦1

𝑗

𝐹 1
𝑀𝑖

, if 𝐻1
𝑀𝑗 > 0

(1 − 𝛽)E[𝑤̄1
𝑖 ]

𝐹 1
𝑅𝑖

, if 𝐻1
𝑀𝑗 = 0 and 𝐻1

𝑅𝑖 > 0

and the share of commercial floor space 𝜃1
𝑖 updates to

𝜃1
𝑖 = 𝐹 1

𝑀𝑖

𝐹 1
𝑅𝑖 + 𝐹 1

𝑀𝑖

.

Now, we can use (4) to arrive at updated transformed wages 𝜔1
𝑗 and transformed amenities 𝑎1

𝑖 .

In the last step, we update the congested car travel times 𝜏1
𝑖𝑗1 using (16):

𝜏1
𝑖𝑗1 = 𝜏 𝑓𝑖𝑗1𝑇𝑅𝑖𝑇𝑀𝑗 exp(𝜆1Λ1

𝑀𝑗 + 𝜆2(Λ1
𝑀𝑗)2),

where as in (17) we have the car traffic density

Λ1
𝑀𝑗 =

𝐼∑︁
𝑖=1

𝐻1
𝑀𝑠1 exp(−𝜅1𝜏

0
𝑖𝑗1)

𝐼∑︁
𝑖=1

𝑅𝑠1 exp(−𝜅1𝜏
0
𝑖𝑗1)

.

Finally, we calculate the percentage changes per neighbourhood from the current iteration to the

previous one. If these changes hit some threshold, the algorithm converges and we obtain a new

model solution, otherwise we continue iterating. Usually, this happens in about 12-15 iterations

or 3-6 hours on a normal machine. As in Ahlfeldt et al. (2015), we update the endogenous

variables {𝜔𝑗 , 𝑎𝑖, 𝑝𝑖, 𝜏𝑖𝑗1} using an update factor. After some experimentation, a factor of 0.7 or

70% weight on the previous iteration value (and 30% on the current iteration) appears to work

best for convergence.
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D Counterfactual analysis: Additional information and results

D.1 Removing separate cycleways

In the No separate cycleways counterfactuals, we remove cycling infrastructure elements that

were present in the reference situation if they satisfy a number of criteria based on road types,

maximum speeds, traffic signs and number of lanes as indicated in OSM. With these criteria,

we aim to only remove separate cycleways situated next to roads. Table D1 gives a detailed

overview of these criteria.

In OSM, one can model cycling infrastructure in three ways.1 First, they can use a dedicated

road type cycleway. Alternatively, they can give the value to the bicycle tag of a road to

indicate that the road has a cycling track next to it that is clearly separated from the main

road. If cycling is not permitted on a road altogether, the bicycle tag is set to no. Finally,

they can indicate on-road cycling provisions such as cycling lanes and cycling streets using tags

like cycleway=lane.2 In our effort, we will focus solely on separate cycleways and leave on-road

cycling provisions in place.

Our approach proceeds in three steps. We first remove the OSM cycleway road type in its

entirety. Subsequently, we disallow on-road cycling on primary and secondary roads that feature

the use_sidepath flag or that have 2 or more lanes in a single direction. Then, we do the same

for roads where the maximum speed is greater than 60 km/h or where the existing cycleway

is compulsory from a legal perspective.3 In all other cases, we leave the cycling infrastructure

unchanged with respect to the reference situation.

After having removed the separate cycleways, we reassign the these lanes to cars in partic-

ularly dense areas (i.e., neighbourhoods with more than 1000 addresses per km2). This affects

our measure of car road lane kilometer per neighbourhood (𝑅𝑗), which we recalculate for the

No cycling and No separate cycleways scenarios, respectively. Thereby we count one separate

cycleway to the right and to the left of the road as one additional car lane each.

D.2 Counterfactual results: Additional maps

In the main text, we discuss percentage changes in residential density (for all counterfactuals) and

residential floor space consumption (for the No cycling scenario) using maps at the neighbourhood
1See https://wiki.openstreetmap.org/wiki/Bicycle for a complete specification and overview of OSM bi-

cycle infrastructure tagging rules and guidelines.
2OSM features a fourth cycling infrastructure tag type track, but it is not used in the Netherlands (see

https://taginfo.geofabrik.de/europe/netherlands/keys).
3In OSM, this is indicated by traffic sign codes NL:G11 and NL:G12a. As the traffic sign NL:G1 indicates a

non-compulsory cycleway, we assume cyclists will cycle on the road in that case.
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Table D1 – Criteria for removal of cycling infrastructure in the No
separate cycleways scenario

On-road cycling is not allowed ... Relevant OSM tags

... if cycleway use was compulsory traffic_sign=NL:G11
traffic_sign=NL:G12a

... on primary and secondary roads with more than one lane in
either direction

lanes >= 2
bicycle == "use_sidepath"

... on any road with a maximum speed >60 km/h max_speed > 60

...on separate cycleways themselves. Cycleway road type is com-
pletely removed. Cyclists cycle on road only if the other rules
permit it.

highway=cycleway

level. In this section, we provide additional maps for workplace density, wages net of commuting

and floor prices for all scenarios.
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(a) Workplace density Δ%

(b) Floor prices Δ%

Notes: This figure illustrates the local spatial differences arising from analysing the No cycling scenario. The
upper figure (a) shows changes in workplace density (in percent), while the lower figure (b) shows changes of
floor prices (in percent). For contrast, percentages displayed are held between the 5th and 95th percentile. Both
figures display the names and locations of the six largest cities in the Netherlands.

Figure D1 – No cycling scenario
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(a) Workplace density Δ%

(b) Floor prices Δ%

Notes: This figure illustrates the local spatial differences arising from analysing the No cycleways scenario. The
upper figure (a) shows changes in workplace density (in percent), while the lower figure (b) shows changes of
floor prices (in percent). For contrast, percentages displayed are held between the 5th and 95th percentile. Both
figures display the names and locations of the six largest cities in the Netherlands.

Figure D2 – No cycleways scenario
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(a) Workplace density Δ%

(b) Floor prices Δ%

Notes: This figure illustrates the local spatial differences arising from analysing the Cycling speed increase
scenario. The upper figure (a) shows changes in workplace density (in percent), while the lower figure (b) shows
changes of floor prices (in percent). For contrast, percentages displayed are held between the 5th and 95th

percentile. Both figures display the names and locations of the six largest cities in the Netherlands.

Figure D3 – Cycling speed increase scenario
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